設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f′(x)表示f(x)導函數(shù).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當k為奇數(shù)時,設(shè)bn=
1
2
f′(n)-n,數(shù)列{bn}的前n項和為Sn,證明不等式(1+bn 
1
bn+1
>e對一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。
考點:導數(shù)在最大值、最小值問題中的應用,導數(shù)的加法與減法法則
專題:綜合題,導數(shù)的綜合應用
分析:(1)先求函數(shù)f(x)的導數(shù),f′(x),再對k進行奇偶數(shù)討論:1°當k 為奇數(shù)時;2°當k 為偶數(shù)時;分別得出導數(shù)值為正或負時的x的取值集合,最后綜合即可;
(2)當k為奇數(shù)時,f′(x)=2(x+
1
x
),要證(1+bn 
1
bn+1
>e,即證(1+
1
n
n+1>e,兩邊取對數(shù),即證ln(1+
1
n
)>
1
n+1
,設(shè)1+
1
n
=t,構(gòu)造函數(shù)g(t)=lnt+
1
t
-1,利用導數(shù)工具研究其單調(diào)性即可證得lnt>1-
1
t
,最后利用累乘法即可證出S2012-1<ln2012.
解答: (1)解:函數(shù)f(x)的定義域為(0,+∞),又f′(x)=2x-2(-1)k
1
x
,
1°當k 為奇數(shù)時,f′(x)=2x+
2
x
,∵x∈(0,+∞),∴f′(x)>0恒成立;
2°當k 為偶數(shù)時,f′(x)=
2(x+1)(x-1)
x
,∵x+1>0,∴f′(x)>0得x>1,即f(x)的單調(diào)增區(qū)間為(1,+∞),
綜上所述,當k 為奇數(shù)時,f(x)的單調(diào)增區(qū)間為(0,+∞),當k 為偶數(shù)時,即f(x)的單調(diào)增區(qū)間為(1,+∞),
(2)當k為奇數(shù)時,f′(x)=2(x+
1
x
),
∴bn=
1
2
f′(n)-n=
1
n
,Sn=1+
1
2
+
1
3
+…+
1
n

要證(1+bn 
1
bn+1
>e,即證(1+
1
n
n+1>e,兩邊取對數(shù),
即證ln(1+
1
n
)>
1
n+1

設(shè)1+
1
n
=t,則n=
1
t-1
,
lnt>1-
1
t
(t>1),構(gòu)造函數(shù)g(t)=lnt+
1
t
-1,
∵x>1,∴g′(t)=
1
t
-
1
t2
>0
∴g(t)在(1,+∞)上是增函數(shù),g(t)>g(1)>0
即lnt>1-
1
t
,∴(1+bn 
1
bn+1
>e,
S2012-1=(1+
1
2
+
1
3
+…+
1
2012
)-1=
1
2
+
1
3
+…+
1
2012
,
∵ln(1+
1
n
)>
1
n+1
,
1
2
+
1
3
+…+
1
2012
<ln2+ln(1+
1
2
)+…+ln(1+
1
2012
)=ln2+ln
3
2
+…+ln
2012
2011

=ln(2×
3
2
×…×
2012
2011
)=ln2012,
1
2
+
1
3
+…+
1
2012
<ln2012,
點評:本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性、證明不等式等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a4+a6=
2
0
4-x2
dx
,則a6(a2+2a4+a6)的值為(  )
A、π2B、4
C、πD、-9π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋擲紅、藍兩顆骰子,設(shè)事件A為“藍色骰子的點數(shù)為3或6”,事件B為“兩顆骰子的點數(shù)之和大于8”.
(1)求P(A),P(B),P(AB).
(2)當已知藍色骰子點數(shù)為3或6時,問兩顆骰子的點數(shù)之和大于8的概率為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0),過M(2,
2
)、N(
6
,1)兩點,O為坐標原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線y=kx+4(k>0)與圓x2+y2=
8
3
相切,并且與橢圓E相交于兩點A、B,求證:
OA
OB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知ABCD是邊長為2的正方形,EA⊥平面ABCD,F(xiàn)C⊥平面ABCD,設(shè)EA=1,F(xiàn)C=2;
(1)證明:平面EAB⊥平面EAD;
(2)求四面體BDEF的體積;
(3)求點B到平面DEF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列數(shù)列{an}的通項公式an=(-1)n(2n-1)(n∈N*),Sn為其前n項和
(1)求S1,S2,S3,S4的值;
(2)猜想Sn的表達式,并用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax+4.
(1)若函數(shù)f(x)滿足f(1+x)=f(1-x),求函數(shù)在x∈[-2,2]的值域;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+1的圖象上方,試確定實數(shù)a的范圍.
(3)若方程f(x)=0在[-1,1]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0,令ω=2,將函數(shù)y=f(x)的圖象向左平移個
π
6
單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(z)在區(qū)間[m,m+10π](-
π
4
<m<
12
)上有20個零點:a1,a2,a3,…,a20,求a1+a2+a3+…+a20的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-2ax2+bx+c,
(1)當c=0時,f(x)在點P(1,3)處的切線平行于直線y=x+2,求a,b的值;
(2)若f(x)在點A(-1,8),B(3,-24)處有極值,求f(x)的表達式.

查看答案和解析>>

同步練習冊答案