A. | $\frac{9}{16}$ | B. | $\frac{9}{32}$ | C. | $\frac{9}{64}$ | D. | $-\frac{9}{32}$ |
分析 先設(shè)出弦的兩端點的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.
解答 解:設(shè)弦的兩端點為A(x1,y1),B(x2,y2),
代入橢圓得$\left\{\begin{array}{l}\frac{{{x}_{1}}^{2}}{16}+\frac{{y}_{1}^{2}}{9}=1\\ \frac{{{x}_{2}}^{2}}{16}+\frac{{{y}_{2}}^{2}}{9}=1\end{array}\right.$,
兩式相減得$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$=0,
即$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{16}$=-$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{9}$,
即-$\frac{9({x}_{1}+{x}_{2})}{16({y}_{1}+{y}_{2})}$=$\frac{({y}_{1}-{y}_{2})}{({x}_{1}-{x}_{2})}$,
即-$\frac{9×2}{16×4}$=$\frac{({y}_{1}-{y}_{2})}{({x}_{1}-{x}_{2})}$,
即$\frac{({y}_{1}-{y}_{2})}{({x}_{1}-{x}_{2})}$=$-\frac{9}{32}$,
∴弦所在的直線的斜率為$-\frac{9}{32}$,
故選:D
點評 本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長的中點問題,常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化,達(dá)到解決問題的目的.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$或$\sqrt{5}$ | B. | 2或5 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月收入(百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 3 | 8 | 12 | 4 | 2 | 1 |
月收入低于55百元人數(shù) | 月收入不低于55百元人數(shù) | 合計 | |
贊成 | a=27 | b=3 | 30 |
不贊成 | c=13 | d=7 | 20 |
合計 | 40 | 10 | 40 |
P( K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com