P是△ABC所在平面外一點;PB=PC=AB=AC,M是線段PA上一點,N是線段BC的中點,則∠MNB=
90°
90°
分析:根據(jù)條件PB=PC=AB=AC,得到三角形ABC和PBC為等腰三角形,然后根據(jù)等腰三角形的性質(zhì),利用線面垂直的判定定理證明BC⊥平面ANP即可.
解答:解:∵N是線段BC的中點,
且PB=PC=AB=AC,
∴PN⊥BC,AN⊥BC,
又∵PN∩AN=N,
∴BC⊥平面ANP,
∵M是線段PA上一點,
∴MN?平面ANP,
∴BC⊥MN,即∠MNB=90°.
故答案為:90°.
點評:本題主要考查線面垂直的判定以及線面垂直性質(zhì)的應(yīng)用,要求熟練掌握線面垂直的判定定理和性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是△ABC所在平面上一點,且
CA
-
CP
=
CP
-
CB
,若△ABC的面積為2,則△PBC面積為( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是△ABC所在平面內(nèi)的一點,
BC
+
BA
=2
BP
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
AC
=0

(1)若P是△ABC所在平面上一點,且|
AP
|=2,∠CAP為銳角,
AP
AC
=2
AP
AB
=2
,求|
AB
+
AC
+
AP
|的最小值.
(2)滿足條件(1)的點P能否在△ABC的邊BC上?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在平面外一點,點O是點P在平面ABC上的射影.若PA=PB=PC,則O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是△ABC所在平面內(nèi)一點,若(15sinA)
PA
+(12sinB)
PB
+(10sinC)
PC
=
0
BA
+
BC
=3
BP
則下列正確的命題序號是
①③④
①③④

①P是△ABC的重心    ②△ABC是銳角三角形  ③△ABC的三邊長有可能是三個連續(xù)的整數(shù)  ④∠C=2∠A.

查看答案和解析>>

同步練習(xí)冊答案