7.從N個編號中要抽取n個號碼入樣,若采用系統(tǒng)抽樣方法抽取,則分段間隔應(yīng)為([$\frac{N}{n}$]表示$\frac{N}{n}$的整數(shù)部分)( 。
A.$\frac{N}{n}$B.nC.[$\frac{N}{n}$]D.[$\frac{N}{n}$]+1

分析 按照系統(tǒng)抽樣的法則,抽樣的間隔應(yīng)是個體總數(shù)除以樣本容量,當(dāng)此比值不是整數(shù)時,抽樣間隔就取此比值的整數(shù)部分.

解答 解:從N個編號中抽n個號碼入樣,按照系統(tǒng)抽樣的規(guī)則,$\frac{N}{n}$為整數(shù)時,分段的間隔為$\frac{N}{n}$,
$\frac{N}{n}$不是整數(shù)時,分段的間隔為[$\frac{N}{n}$].
故選 C.

點(diǎn)評 本題考查系統(tǒng)抽樣方法,是一個基礎(chǔ)題,這種題目的關(guān)鍵是熟悉整個抽樣過程.抽樣的間隔是個體總數(shù)除以樣本容量這個比值的整數(shù)部分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的定義域?yàn)镽,且f(x)>1-f′(x),f(0)=4,則不等式f(x)>1+eln3-x的解集為( 。
A.(0,+∞)B.$({\frac{1}{2},+∞})$C.(1,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={0,1,2,3},B={x|x(x-3)<0},則A∩B=( 。
A.{0,1,2,3}B.{0,1,2}C.{1,2}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一次函數(shù)f(x)=ax+b有一個零點(diǎn)1,則函數(shù)g(x)=bx2-ax的零點(diǎn)是0,-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某電腦公司有6名產(chǎn)品推銷員,其工作年限和年推銷金額數(shù)據(jù)如表:
推銷員編號12345
工作年限x/年35679
年推銷金額y/萬元609090120150
(1)畫出散點(diǎn)圖;
(2)求年推銷金額y關(guān)于工作年限x的線性回歸方程;
(3)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)x,y滿足x2+y2=4(y≥0),則m=$\sqrt{3}$x+y的取值范圍是(  )
A.(-2$\sqrt{3}$,4)B.[-2$\sqrt{3}$,4]C.[-4,4]D.[-4,2$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知α∈($\frac{π}{2}$,π),且cosα=-$\frac{24}{25}$,則$\frac{tan(α+\frac{15}{2}π)}{cos(α+7π)}$=( 。
A.$\frac{7}{25}$B.-$\frac{7}{25}$C.$\frac{25}{7}$D.-$\frac{25}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.將下列函數(shù)配方:
(1)f(x)=x2-2x+3
(2)f(x)=3x2+6x-1
( 3 )f(x)=-2x2+3x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).某公司每月最多生產(chǎn)100臺報(bào)警系統(tǒng)裝置,生產(chǎn)x(x∈N*)臺的收入函數(shù)為R(x)=3000x+ax2(單位:元),其成本函數(shù)為C(x)=kx+4000(單位:元),利潤是收入與成本之差.當(dāng)生產(chǎn)10臺時,成本為9000元,利潤為19000元.
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);
(2)利潤函數(shù)P(x)與邊際利潤函數(shù)MP(x)是否具有相同的最大值?

查看答案和解析>>

同步練習(xí)冊答案