求函數(shù)f(x)=
1
3
x3-4x+
1
3
的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意求導(dǎo)f′(x)=x2-4=(x+2)(x-2),從而求函數(shù)的極值.
解答: 解:∵f(x)=
1
3
x3-4x+
1
3

∴f′(x)=x2-4=(x+2)(x-2);
在x=-2附近,左側(cè)f′(x)>0,右側(cè)f′(x)<0;
則f(x)在x=-2處有極大值f(-2)=
17
3
;
在x=2附近,左側(cè)f′(x)<0,右側(cè)f′(x)>0;
則f(x)在x=2處有極小值f(2)=-5.
點(diǎn)評(píng):本題考查了函數(shù)的極值的求法,利用了導(dǎo)數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=4x與曲線y=x3在第一象限內(nèi)圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)O是線段BC外一點(diǎn),點(diǎn)P是平面上任意一點(diǎn),且
OP
OB
OC
(λ、μ∈R),則下面的說法正確的是( 。
A、若λ+μ=1,且λ>0,則點(diǎn)P在線段BC的延長線上
B、若λ+μ=1,且λ<0,則點(diǎn)P在線段BC的延長線上
C、若λ+μ>1,則點(diǎn)P在△OBC外
D、若λ+μ<1,則點(diǎn)P在△OBC內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1+x13=3,x2+
3x2
=3,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形ABCD的一組對邊BC、AD的長分別為6,4,BC⊥AD,則連接對角線AC,BD中點(diǎn)的線段長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c∈(0,+∞),證明:
1
a
+
1
b
+
1
c
2
a+b
+
2
b+c
+
2
c+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,ABCD是正方形,PA⊥底面ABCD,且PA=AB=a.
(1)求異面直線CD與PB所成的角;
(2)求直線PC與平面ABCD所成角正切值;
(3)求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(x2+1),g(x)=(
1
3
)x-m
,若?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)則實(shí)數(shù)m的取值范圍是(  )
A、[
1
9
,+∞)
B、(-∞,
1
9
]
C、[
1
3
,+∞)
D、(-∞,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在正方體ABCD-A′B′C′D′中,E是棱BB′中點(diǎn),G是DD′中點(diǎn),F(xiàn)是BC上一點(diǎn)且FB=
1
4
BC,則GB與EF所成的角為
 

查看答案和解析>>

同步練習(xí)冊答案