設(shè)數(shù)學(xué)公式,那么f(n)-m≥0對(duì)于n(n∈N*,n≥2)恒成立,則m的取值范圍為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:計(jì)算f(n+1)-f(n)的值大于零,可得函數(shù)f(n)為增函數(shù),故n≥2時(shí),函數(shù)f(n)的最小值為f(2),結(jié)合題意可得f(2)≥m,由此求得m的取值范圍.
解答:∵
∴f(n+1)=,
∴f(n+1)-f(n)=-=>0.
故函數(shù)f(n)為增函數(shù),故n≥2時(shí),函數(shù)f(n)的最小值為f(2)=+=,
再由f(n)-m≥0對(duì)于n(n∈N*,n≥2)恒成立,故有≥m.
故m的取值范圍為 ,
故選D.
點(diǎn)評(píng):本題主要考查利用函數(shù)的單調(diào)性求函數(shù)的最值,函數(shù)的恒成立問(wèn)題,求出f(n)的最小值屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+
2
x
,x∈(
1
2
,2),那么m+n的值( 。
A、大于9B、等于9
C、小于9D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(n)=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
(n∈N*)
,那么f(n)-m≥0對(duì)于n(n∈N*,n≥2)恒成立,則m的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+
2
x
,x∈(
1
2
,2),那么m+n的值( 。
A.大于9B.等于9C.小于9D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)(1)(解析版) 題型:選擇題

如果對(duì)于函數(shù)y=f(x)的定義域內(nèi)的任意x,都有N≤f(x)≤M(M,N為常數(shù))成立,那么稱f(x)為可界定函數(shù),M為上界值,N為下界值.設(shè)上界值中的最小值為m,下界值中的最大值為n.給出函數(shù)f(x)=2x+,x∈(,2),那么m+n的值( )
A.大于9
B.等于9
C.小于9
D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案