在平面直角坐標系中,若點A、B同時滿足
(1)點A、B都在函數(shù)y=f(x)的圖象上;
(2)點A、B關(guān)于原點對稱.則稱點對(A,B)是函數(shù)y=f(x)的一個“姐妹點對”(規(guī)定點對(A,B)與點對(B,A)是同一個“姐妹點對”).若函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,則a的取值范圍為________.
解:構(gòu)建函數(shù)y=ax(a>0,且a≠1)和函數(shù)y=x+a,函數(shù)y=ax(a>0,且a≠1)關(guān)于原點對稱的函數(shù)為y=-a-x
∵函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,
∴函數(shù)y=x+a與y=a-x只有一個交點
∵a>1時,y=a-x單調(diào)減,與函數(shù)y=x+a圖象只有一個交點;
0<a<1時,y=a-x單調(diào)減,與函數(shù)y=x+a圖象沒有交點;
此時有a>1;
故答案為a>1.
分析:構(gòu)建函數(shù)y=ax(a>0,且a≠1)和函數(shù)y=x+a,函數(shù)y=ax(a>0,且a≠1)關(guān)于原點對稱的函數(shù)為y=-a-x,函數(shù)f(x)=ax-x-a(a>0且a≠1)只有一個“姐妹點對”,可轉(zhuǎn)化為函數(shù)y=x+a與y=-a-x只有一個交點,由此可得結(jié)論.
點評:本題考查新定義,考查函數(shù)的對稱性,考查學生分析轉(zhuǎn)化問題的能力,屬于中檔題.