【題目】下列各組函數(shù)中,表示同一個函數(shù)的是(
A.f(x)=2x+1與g(x)=
B.y=x﹣1與y=
C.y= 與y=x+3
D.f(x)=1與g(x)=1

【答案】D
【解析】解:對于A:f(x)=2x+1的定義域為R,而g(x)= 的定義域為{x∈R|x≠0},定義域不同,∴不是同一函數(shù);
對于B:y=x﹣1的定義域為R,而y= 的定義域為{x∈R|x≠﹣1},定義域不同,∴不是同一函數(shù);
對于C:y= 的定義域為{x∈R|x≠3},而y=x+3的定義域為R,定義域不同,∴不是同一函數(shù);
對于D:f(x)=1(x∈R),g(x)=1(x∈R),他們的定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選D.
【考點精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識點,需要掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,且a≠1,若函數(shù)f(x)=2ax﹣5在區(qū)間[﹣1,2]的最大值為10,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用兩種循環(huán)寫出1+2+3+…+100的算法,并畫出各自的流程圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】六個面都是平行四邊形的四棱柱稱為平行六面體。如,在平行四邊形 ABCD 中,有AC2+BD2=2(AB2+AD2) ,那么在圖(2)的平行六面體 ABCD-A1B1C1D1 中有AC12+BD12+CA12+DB12 等于( )
12
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.3(AB2+AD2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間(0,+∞)上不是增函數(shù)的是(
A.y=2x+1
B.y=3x2+1
C.
D.y=2x2+x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若 ,求 的值;當(dāng) 時,求 的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定圓P:x2+y2=2x及拋物線S:y2=4x,過圓心P作直線l,此直線與上述兩曲線的四個交點,自上而下順次為A,B,C,D;如果線段AB,BC,CD的長度按此順序構(gòu)成一個等差數(shù)列,則直線l的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有兩個命題p:不等式|x|+|x-1|≥m的解集為R;q:函數(shù) 是減函數(shù).若這兩個命題中有且只有一個真命題,求實數(shù)m的范圍.

查看答案和解析>>

同步練習(xí)冊答案