精英家教網 > 高中數學 > 題目詳情
下列命題中,其中不正確的個數是( )
①若兩條直線和第三條直線所成的角相等,則這兩條直線相互平行
②若兩條直線都和第三條直線垂直,則這兩條直線互相平行
③已知平面α⊥平面γ,平面β⊥平面γ,α∩β=l,則l⊥γ
④一個平面α內兩條不平行的直線都平行于另一平面β,則α∥β
⑤過△ABC所在平面α外一點P,作PO⊥α,垂足為O,連接PA、PB、PC,若有PA=PB=PC,則點O是△ABC的內心
⑥垂直于同一條直線的兩個平面互相平行.
A.1
B.2
C.3
D.4
【答案】分析:通過舉反例可判斷①②錯誤;利用面面垂直的性質定理和線面垂直的判定定理可證明③正確;利用面面平行的判定定理可判斷④正確;利用直線在平面內的射影性質,可判斷⑤錯誤;利用空間向量理論可證明⑥正確
解答:解:①如正方體從一個定點出發(fā)的三條棱,兩兩互相垂直,故①②錯;
③設α∩γ=a,β∩γ=b,在平面γ內作直線c⊥a,d⊥b,c∩d=O
∵平面α⊥平面γ,∴c⊥α,∵l?α,∴c⊥l,同理可證d⊥l
即l垂直于平面γ內的兩條相交直線,∴l(xiāng)⊥γ,③正確;
④依據面面平行的判定定理,一個平面α內兩條相交的直線都平行于另一平面β,則α∥β,可判斷④正確;
⑤∵PA=PB=PC,∴它們在平面ABC內的射影OA=OB=OC,從而點O為三角形ABC的外心,⑤錯;
⑥垂直于同一條直線的兩個平面,即兩平面的法向量共線,故兩平面平行,⑥正確;
故正確命題有③④⑥三個
故選 C
點評:本題綜合考查了空間線線的位置關系,空間面面垂直的性質及線面垂直的判定,斜線的射影性質等基礎知識,具有較強的空間想象能力和推理論證能力是解決本題的關鍵
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列命題中:①函數,f(x)=sinx+
2
sinx
(x∈(0,π))的最小值是2
2
;②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;③如果正實數a,b,c滿足a + b>c則
a
1+a
+
b
1+b
c
1+c
;④如果y=f(x)是可導函數,則f′(x0)=0是函數y=f(x)在x=x0處取到極值的必要不充分條件.其中正確的命題是( 。
A、①②③④B、①④
C、②③④D、②③

查看答案和解析>>

科目:高中數學 來源: 題型:

在下列命題中:
①α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要條件
②函數y=sinxcosx的最小正周期是2π
③在△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形
④函數y=2sin(2x+
π
6
)+1圖象的對稱中心為(
2
-
π
12
,1)
(k∈Z).
其中正確的命題為
 
(請將正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

在下列命題中:
(1)α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要條件
(2)函數y=sinxcosx的最小正周期是2π
(3)在△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形
(4)函數y=2sin(2x+
π
6
)+1圖象的對稱中心為(
2
-
π
12
,1)(k∈R)
(5)女大學生的身高預報體重的回歸方程y′=0.849x-85.712,對于身高為172cm的女大學生可以得到其精確體重為60.316(kg).
其中正確的命題為
 
(請將正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中,
(1)f(x)=sinax+cosax(a≠0)既不是奇函數也不是偶函數.
(2)直線x=
4
是函數f(x)=sin(2x+
2
)的圖象的一條對稱軸

(3)若α是三角形的一個內角,則f(α)=sinα+cosα有最大值
2
,最小值不存在

(4)函數y=sin|x|,x∈R是最小正周期為π的周期函數.
其中正確命題的序號為
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中:
(1)α=2kπ+
π
3
(k∈Z)是tanα=
3
的充分不必要條件;
(2)函數f(x)=|2cosx-1|的最小正周期是π;
(3)△ABC中,若cosAcosB>sinAsinB,則△ABC為鈍角三角形;
(4)若a+b=0,則函數y=asinx-bcosx的圖象的一條對稱軸方程為x=
π
4

其中是真命題的為
 

查看答案和解析>>

同步練習冊答案