(本小題滿分10分)
求過點M(0,1)且和拋物線C:
僅有一個公共點的直線
的方程.
試題分析:過點M與拋物線C有一個公共點包括兩種情況,一是過M的直線與拋物線的對稱軸平行;二是過M的直線與拋物線相切,當(dāng)相切時可設(shè)出切線方程為y=kx+1它與拋物線方程聯(lián)立,利用判別式等于零求出k值,還要注意討論切線斜率不存在的情況.
點評:直線與拋物線有一個公共點包括兩種情況:一是過M的直線與拋物線的對稱軸平行;
二是過M的直線與拋物線相切,當(dāng)相切時可設(shè)出切線方程為y=kx+1它與拋物線方程聯(lián)立,利用判別式等于零求出k值,還要注意討論切線斜率不存在的情況.還要注意:若點M在拋物線的外部,則應(yīng)有兩條切線,若點M在拋物線上,應(yīng)有一條切線,若點M在拋物線內(nèi)部沒有切線.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,已知雙曲線以長方形ABCD的頂點A、B為左、右焦點,且雙曲線過C、D兩頂點.若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為_____________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的焦點
和
,長軸長6,設(shè)直線
交橢圓
于
,
兩點,求線段
的中點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已(12分)知橢圓的中心在坐標(biāo)原點,離心率為
,一個焦點是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線
過點F交橢圓于A、B兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
一動點到y(tǒng)軸的距離比到點(2,0)的距離小2,則此動點的軌跡方程為___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線兩條漸近線互相垂直,那么它的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知F
1,F(xiàn)
2是橢圓
的兩個焦點,過F
2的直線交橢圓于點A、B,若
,
則
( )
A. 10
B. 11
C. 9
D.16
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的準(zhǔn)線方程是
查看答案和解析>>