2014年山東省第二十三屆運(yùn)動(dòng)會(huì)將在濟(jì)寧召開(kāi),為調(diào)查我市某校高中生是否愿意提供志愿者服務(wù),用簡(jiǎn)單隨機(jī)抽樣方法從該校調(diào)查了50人,結(jié)果如下:K
是否愿意提供志愿者服務(wù)
性別
愿意不愿意
男生205
女生1015
(I)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人?
(II)在(I)中抽取的6人中任選2人,求恰有一名女生的概率;
(III)你能否有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量,其中n=a+b+c+d.
【答案】分析:(I)根據(jù)分層抽樣的定義,寫出比例式,得到男生抽取人數(shù)即可.
(II)由題意知本題是一個(gè)等可能事件的概率,本題解題的關(guān)鍵是利用排列組合寫出所有事件的事件數(shù),及滿足條件的事件數(shù),得到概率.
(III)計(jì)算K2,同臨界值表進(jìn)行比較,得到有多大把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān).
解答:解:(I)由題意,男生抽取6×=4人,女生抽取6×=2人;
(II)在(I)中抽取的6人中任選2人,恰有一名女生的概率P==;
(III)K2==8.333,由于8.333>6.635,所以有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān).
點(diǎn)評(píng):本題考查分層抽樣方法和等可能事件的概率,獨(dú)立性檢驗(yàn)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)寧一模)2014年山東省第二十三屆運(yùn)動(dòng)會(huì)將在濟(jì)寧召開(kāi),為調(diào)查我市某校高中生是否愿意提供志愿者服務(wù),用簡(jiǎn)單隨機(jī)抽樣方法從該校調(diào)查了50人,結(jié)果如下:K
是否愿意提供志愿者服務(wù)
性別
愿意 不愿意
男生 20 5
女生 10 15
(I)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人?
(II)在(I)中抽取的6人中任選2人,求恰有一名女生的概率;
(III)你能否有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濟(jì)寧市2012屆高三第一次高考模擬數(shù)學(xué)文科試題 題型:044

2014年山東省第二十三屆運(yùn)動(dòng)會(huì)將在濟(jì)寧召開(kāi),為調(diào)查我市某校高中生是否愿意提供志愿者服務(wù),用簡(jiǎn)單隨機(jī)抽樣方法從該校調(diào)查了50人,結(jié)果如下:

(Ⅰ)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人?

(Ⅱ)在(Ⅰ)中抽取的6人中任選2人,求恰有一名女生的概率;

(Ⅲ)你能否有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)?下面的臨界值表供參考:

獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

2014年山東省第二十三屆運(yùn)動(dòng)會(huì)將在濟(jì)寧召開(kāi),為調(diào)查我市某校高中生是否愿意提供志愿者服務(wù),用簡(jiǎn)單隨機(jī)抽樣方法從該校調(diào)查了50人,結(jié)果如下:K
是否愿意提供志愿者服務(wù)
性別
愿意 不愿意
男生 20 5
女生 10 15
(I)用分層抽樣的方法在愿意提供志愿者服務(wù)的學(xué)生中抽取6人,其中男生抽取多少人?
(II)在(I)中抽取的6人中任選2人,求恰有一名女生的概率;
(III)你能否有99%的把握認(rèn)為該校高中生是否愿意提供志愿者服務(wù)與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
獨(dú)立性檢驗(yàn)統(tǒng)計(jì)量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

  山東省第23屆省運(yùn)會(huì)將于2014年在我市召開(kāi),為響應(yīng)市政府減排降污號(hào)召,某設(shè)備制造廠2013年初用72萬(wàn)元購(gòu)進(jìn)一條車用尾氣凈化設(shè)備生產(chǎn)線,并立即投入生產(chǎn).該生產(chǎn)線第一年維修保養(yǎng)費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年所需維修保養(yǎng)費(fèi)用比上一年增加4萬(wàn)元,該生產(chǎn)線使用后,每年的年收入為50萬(wàn)元,設(shè)該生產(chǎn)線使用x年后的總盈利額為y萬(wàn)元.

  (1)寫出y與x之間的函數(shù)關(guān)系式;(前x年的總盈利額=前x年的總收入-前x 年的總維修保養(yǎng)費(fèi)用-購(gòu)買設(shè)備的費(fèi)用)

  (2)從第幾年開(kāi)始,該生產(chǎn)線開(kāi)始盈利(總盈利額為正值);

  (3)到哪一年,年平均盈利額能達(dá)到最大值?此時(shí)工廠共獲利多少萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案