【題目】已知拋物線(),過其焦點(diǎn)作斜率為1的直線交拋物線于, 兩點(diǎn),且,
(1)求拋物線的方程;
(2)已知?jiǎng)狱c(diǎn)的圓心在拋物線上,且過點(diǎn),若動(dòng)圓與軸交于兩點(diǎn),且,求的最小值.
【答案】(1);(2).
【解析】試題分析:(1)設(shè)直線與拋物線聯(lián)立方程組,利用韋達(dá)定理得到x1+x2=2p,y1+y2=3p,通過|MN|=y1+y2+p=4p=16,求出p,即可求出拋物線C的方程.
(2)設(shè)動(dòng)圓圓心,得,求的表達(dá)式,推出x0的范圍,然后求解的最小值.
試題解析:
(1):
聯(lián)立,
設(shè),則
又因?yàn)橹本過焦點(diǎn),則,
所以該拋物線的方程為: .
(2)設(shè),由于圓過點(diǎn),
則圓P的方程為: ,
令,則.由對(duì)稱性, ,不妨,則.
故
由于,
故,( 時(shí)取等)
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為為直徑的圓O過橢圓E的上頂點(diǎn)D,直線DB與圓O相交得到的弦長(zhǎng)為.設(shè)點(diǎn),連接PA交橢圓于點(diǎn)C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域和值域;
(2)判斷函數(shù)f(x)的奇偶性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}首項(xiàng)a1=1,公差為d,且數(shù)列 是公比為4的等比數(shù)列,
(1)求d;
(2)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(3)求數(shù)列 的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓x2+y2+x﹣6y+m=0與直線x+2y﹣3=0相交于P,Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積(其中∠BAC=30°)及其體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com