考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:分別設(shè)出兩個(gè)輔助函數(shù)f(x)=e
x+lnx,g(x)=
,由導(dǎo)數(shù)判斷其在(0,1)上的單調(diào)性,結(jié)合已知條件0<x
1<x
2<1得答案.
解答:解:令f(x)=e
x+lnx,
f′(x)=ex+,
當(dāng)0<x<1時(shí),f′(x)>0,
∴f(x)在(0,1)上為增函數(shù),
∵0<x
1<x
2<1,
∴
ex1+lnx1<ex2+lnx2,
即
ex2-ex1>lnx1-lnx2.
由此可知選項(xiàng)A,B不正確.
令g(x)=
,
g′(x)=,
當(dāng)0<x<1時(shí),g′(x)<0.
∴g(x)在(0,1)上為減函數(shù),
∵0<x
1<x
2<1,
∴
>,
即
x2ex1>x1ex2.
∴選項(xiàng)C正確而D不正確.
故選:C.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)構(gòu)造法,解答此題的關(guān)鍵在于想到構(gòu)造兩個(gè)函數(shù),是中檔題.