如圖2,過(guò)點(diǎn)P的直線與圓O相交于A,B兩點(diǎn).若PA=1,AB=2,PO=3,則圓O的半徑等于_______.

 

【答案】

【解析】設(shè)交圓O于C,D,如圖,設(shè)圓的半徑為R,由割線定理知

【點(diǎn)評(píng)】本題考查切割線定理,考查數(shù)形結(jié)合思想,由切割線定理知,從而求得圓的半徑

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓C的方程為x2+
y2
2
=1
,點(diǎn)P(a,b)的坐標(biāo)滿(mǎn)足a2+
b2
2
≤1
,過(guò)點(diǎn)P的直線l與橢圓交于A、B兩點(diǎn),點(diǎn)Q為線段AB的中點(diǎn),求:
(1)點(diǎn)Q的軌跡方程;
(2)點(diǎn)Q的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓C:
x2
16
+
y2
4
=1的右頂點(diǎn)是A,上下兩個(gè)頂點(diǎn)分別為B,D,四邊形DAMB是矩形(O為坐標(biāo)原點(diǎn)),點(diǎn)E,P分別是線段OA,MA的中點(diǎn).
(1)求證:直線DE與直線BP的交點(diǎn)在橢圓C上.
(2)過(guò)點(diǎn)B的直線l1,l2與橢圓C分別交于R,S(不同于B點(diǎn)),且它們的斜率k1,k2滿(mǎn)足k1•k2=-
1
4
求證:直線SR過(guò)定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過(guò)點(diǎn)P的直線與C1,C2都有公共點(diǎn),則稱(chēng)P為“C1-C2型點(diǎn)”
(1)在正確證明C1的左焦點(diǎn)是“C1-C2型點(diǎn)“時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1-C2型點(diǎn)”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點(diǎn)都不是“C1-C2型點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形OABP中,過(guò)點(diǎn)P的直線與線段OA、OB分別相交于點(diǎn)M、N,若
OM
=x
OA
,
ON
=y
OB

(0<x<1).
(1)求y=f(x)的解析式;
(2)令F(x)=
1
f(x)
+x,判斷F(x)的單調(diào)性,并給出你的證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案