拋物線y=x2上的一動(dòng)點(diǎn)M到直線l:x-y-1=0距離的最小值是(  )
A.
3
2
8
B.
3
8
C.
3
4
D.
3
2
4
(法一)對(duì)y=x2求導(dǎo)可得y′=2x
令y′=2x=1可得x=
1
2

∴與直線x-y-1=0平行且與拋物線y=x2相切的切點(diǎn)(
1
2
,
1
4
),切線方程為y-
1
4
=x-
1
2
即x-y-
1
4
=0

由兩平行線的距離公司可得所求的最小距離d=
|-
1
4
+1|
2
=
3
2
8

(法二)設(shè)拋物線上的任意一點(diǎn)M(m,m2
M到直線x-y-1=0的距離d=
|m-m2-1|
2
=
|m2-m+1|
2
=
|(m-
1
2
)
2
+
3
4
|
2

由二次函數(shù)的性質(zhì)可知,當(dāng)m=
1
2
時(shí),最小距離d=
3
4
2
=
3
2
8

故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M,N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點(diǎn),且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求點(diǎn)P的軌跡方程
(2)當(dāng)A,B所在直線滿足什么條件時(shí),P的軌跡為一條直線?(請(qǐng)千萬不要證明你的結(jié)論)
(3)在滿足(1)的條件下,求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2上有一條長為2的動(dòng)弦AB,則AB中點(diǎn)M到x軸的最短距離為
3
4
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•焦作一模)點(diǎn)M是拋物線y=x2上的動(dòng)點(diǎn),點(diǎn)M到直線2x-y-a=0(a為常數(shù))的最短距離為
5
,則實(shí)數(shù)a的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2上有一定點(diǎn)A(-1,1)和兩動(dòng)點(diǎn)P、Q,當(dāng)PA⊥PQ時(shí),點(diǎn)Q的橫坐標(biāo)取值范圍是( 。
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省實(shí)驗(yàn)中學(xué)、華師附中、廣雅中學(xué)三校高三聯(lián)考數(shù)學(xué)試卷(文科)(廣州一模后)(解析版) 題型:解答題

設(shè)M,N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點(diǎn),且l1∩l2=P,若|AB|=1,
(1)若|AB|=1,求點(diǎn)P的軌跡方程
(2)當(dāng)A,B所在直線滿足什么條件時(shí),P的軌跡為一條直線?(請(qǐng)千萬不要證明你的結(jié)論)
(3)在滿足(1)的條件下,求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案