如圖,直四棱柱底面直角梯形,,,是棱上一點,,,,,.
(1)求直四棱柱的側(cè)面積和體積;
(2)求證:平面.
(1),;(2)證明見解析.

試題分析:(1)要求直棱柱的體積,高已知為,而底面是直角梯形,面積易求,故體積為,側(cè)面積為底面周長乘以高,因此關(guān)鍵是求出斜腰的長,在直角梯形中也易求得;(2)要證明線面垂直,就要證直線與平面內(nèi)的兩條相交直線垂直,在平面內(nèi)首先有,這由已知可直接得到,而證明可在直角梯形通過計算利用勾股定理證明,,,因此,得證.
(1)底面直角梯形的面積       2分
,在中,,,則,     4分
側(cè)面積  6分

(2)過,在中,,,則,,
,      10分
.又,平面.  12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,正方形ABCD和矩形ABEF所在的平面互相垂直,M為AF的中點,BN⊥CE.

(1)求證:CF∥平面MBD;
(2)求證:CF⊥平面BDN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面為矩形,平面,的中點.
(1)證明://平面;
(2)設(shè),三棱錐的體積,求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點,O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點.

(1)證明:O1′,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖1,直角梯形中, 四邊形是正方形,,.將正方形沿折起,得到如圖2所示的多面體,其中面,中點.
(1) 證明:∥平面;
(2) 求三棱錐的體積.
     
圖1                     圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,三角形ABC是直角三角形,ACB=,PA平面ABC,
此圖形中有____________個直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l⊥平面α,直線m?平面β,有下面四個命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正確的命題(  )
A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間四邊形ABCD中,若,則所成角為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案