有一個邊長為2的正六邊形墻洞,一蜘蛛編制了一個近似為內(nèi)切圓的蛛網(wǎng),蚊子只有蛛網(wǎng)邊緣與洞壁間的間隙處才能飛過,則飛過此洞的蚊子被捕食的概率為
 
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)幾何概型概率求法,飛過此洞的蚊子被捕食的概率為內(nèi)切圓的面積與正六邊形的面積比.
解答: 解:正六邊形的邊長為2,所以面積為
3
4
×22=6
3
,其內(nèi)切圓的半徑為2×
3
2
=
3
,面積為π(
3
)2=3π

所以飛過此洞的蚊子被捕食的概率
6
3
=
3
π
6
;
故答案為:
3
6
π
點評:本題主要考查了幾何概型,以及正六邊形與其內(nèi)切圓的面積的計算,解題的關鍵是弄清幾何測度,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足Sn=1-an,
(1)求數(shù)列{an}的通項公式;
(2)設bn=4(n+1)an,Tn是數(shù)列{bn}的前n項和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,-1),
b
=(-2,t),若(2
a
-
b
)⊥
a
,則t=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一學生在河岸緊靠河邊筆直行走,經(jīng)觀察,在和河對岸靠近河邊有一參照物與學生前進方向成30度角,學生前進200米后,測得該參照物與前進方向成75度角,則河的寬度為( 。
A、50(
3
+1)米
B、100(
3
+1)米
C、50
2
D、100
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1-
1
x
)(3x+2)5的展開式中的常數(shù)項為( 。
A、210B、-240
C、32D、-208

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y1=a•x2,y2=c•2x,y3=b•x3,則由表中數(shù)據(jù)確定f(x),g(x),h(x)依次對應( 。
xf(x)g(x)h(x)
120.20.2
550253.2
10200200102.4
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y1,y3,y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個三角形某邊長為4,周長為10,則此三角形面積的最大值為( 。
A、2
5
B、4
5
C、
9
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an+1=
2an,0≤an
1
2
2an-1,
1
2
an<1
,若a1=
3
5
,則a2014=( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,1),B(3,-2),點P是直線l:2x+y-1=0上的動點,則|PA|2+|PB|2的最小值為( 。
A、
91
10
B、
93
10
C、
97
10
D、
99
10

查看答案和解析>>

同步練習冊答案