已知α,β是兩個(gè)不同的平面,直線l⊥α,直線m?β,有下面四個(gè)命題:
(1)α∥β⇒l⊥m
(2)α⊥β⇒l∥m
(3)l∥m⇒α⊥β
(4)l⊥m⇒α∥β
其中正確命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.以上都不對(duì)
【答案】分析:(1)⇒l⊥β,又m?β,則l⊥m;(2)⇒l∥β或l?β,又m?β,則l與m位置關(guān)系不確定;
(3)⇒m⊥α,又m?β,則α⊥β;(4)⇒m?α或m∥α,又m?β,推不出α∥β.
解答:解:由于α,β是兩個(gè)不同的平面,(1)∵α∥β,l⊥α,∴l(xiāng)⊥β,又由直線m?β,∴l(xiāng)⊥m,故(1)正確;
(2)∵α⊥β,l⊥α,∴l(xiāng)∥β或l?β,而m?β,則l與m位置關(guān)系不確定,故(2)不正確;
(3)∵l∥m,l⊥α,∴m⊥α,又由直線m?β,∴α⊥β,故(3)正確;
(4)∵l⊥m,l⊥α,∴m?α或m∥α,又m?β,則α∥β或α∩β,故(4)不正確;
故答案選 B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是,判斷命題真假,比較綜合的考查了線面、線線的平行與垂直的關(guān)系,我們可以用空間幾何中的定義、定理、公理對(duì)四個(gè)結(jié)論逐一進(jìn)行判斷,可以得到正確的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是兩個(gè)不同的點(diǎn),m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出下列4個(gè)命題:
①若m∩n=A,A∈α,B∈m,則B∈α;
②若m?α,A∈m,則A∈α;
③若m?α,m⊥β,則α⊥β;
④若m?α,n?β,m∥n,則α∥β,
其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,m⊥β⇒α⊥β;④m?α,n?β,m∥n⇒α∥β.其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知A,B是兩個(gè)不同的點(diǎn),m,n是兩條不重合的直線,,是兩個(gè)不重合的平面,給出下列4個(gè)命題:①若,,,則;②若,,則;③若,則;④若,,,則,其中真命題為(   )

A.①③             B.①④             C.②③             D.②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省六安市霍邱一中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知A、B是兩個(gè)不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案