【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求,的值;
(2)證明函數(shù)存在唯一的極大值點,且.
【答案】(1)(2)證明見解析
【解析】
(1)求導,可得(1),(1),結合已知切線方程即可求得,的值;
(2)利用導數(shù)可得,,再構造新函數(shù),利用導數(shù)求其最值即可得證.
(1)函數(shù)的定義域為,,
則(1),(1),
故曲線在點,(1)處的切線方程為,
又曲線在點,(1)處的切線方程為,
,;
(2)證明:由(1)知,,則,
令,則,易知在單調遞減,
又,(1),
故存在,使得,
且當時,,單調遞增,當,時,,單調遞減,
由于,(1),(2),
故存在,使得,
且當時,,,單調遞增,當,時,,,單調遞減,
故函數(shù)存在唯一的極大值點,且,即,
則,
令,則,
故在上單調遞增,
由于,故(2),即,
.
科目:高中數(shù)學 來源: 題型:
【題目】已知,是兩個不重合的平面,在下列條件中,可判斷平面,平行的是( )
A.,是平面內(nèi)兩條直線,且,
B.,是兩條異面直線,,,且,
C.面內(nèi)不共線的三點到的距離相等
D.面,都垂直于平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)若點在直線上,求直線的極坐標方程;
(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,,橢圓上一點到的距離之和為4.過點作直線的垂線交直線于點.
(1)求橢圓的標準方程;
(2)試判斷直線與橢圓公共點的個數(shù),并說明理由;
(3)直線與直線交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩位運動員一起參加賽前培訓.現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:86 85 79 86 84 84 85 91
(Ⅰ)請你運用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)若用甲8次成績中高于85分的頻率估計概率,對甲同學在今后的3次測試成績進行預測,記這3次成績中高于85分的次數(shù)為,求的分布列及數(shù)學期望;
(Ⅲ)現(xiàn)要從中選派一人參加正式比賽,依據(jù)所抽取的兩組數(shù)據(jù)分析,你認為選派哪位選手參加較為合適?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD-中,AB//CD,AB=1,CD=3,AP=2,DP=2,PAD=60°,AB⊥平面PAD,點M在棱PC上.
(Ⅰ)求證:平面PAB⊥平面PCD;
(Ⅱ)若直線PA// 平面MBD,求此時直線BP與平面MBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面ABCD,底面ABCD為梯形,,,且.
(1)在PD上是否存在一點F,使得平面PAB,若存在,找出F的位置,若不存在,請說明理由;
(2)求二面角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com