設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn
【答案】分析:(1)分別令n=2,3,4,5,由題設(shè)條件能夠得到a1,a2,a3,a4,a5,a6的值,從而能夠求出S6
(2)由條件得,an+3=-an,由此知an+6=-an+3=an
(3)由題設(shè)條件能夠知a1=a,a2=b,a3=b-a,a4=-a,a5=-b,a6=a-b.S6=0.再由S6n+k=Sk,n∈N*,能夠?qū)С鰯?shù)列前n項(xiàng)和Sn
解答:解:(1)a1=1,a2=-2,a3=-3,a4=-1,a5=2,a6=3,
∴S6=0.(4分)
(2)由條件得
∴an+3=-an,(6分)∴an+6=-an+3=an,即an+6=an.(8分)
(3)a1=a,a2=b,a3=b-a,a4=-a,a5=-b,a6=a-b.
∴S6=0.(10分)
由(2)得S6n+k=Sk,n∈N*,k=1,,6.(12分)
,k∈N*(14分)
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意數(shù)列遞推式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2010項(xiàng)和S2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}前2012項(xiàng)和等于
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)模擬試卷3(文科)(解析版) 題型:解答題

設(shè)數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項(xiàng),并求出該6項(xiàng)之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案