已知圓A:軸負半軸交于B點,過B的弦BE與軸正半軸交于D點,且2BD=DE,曲線C是以A,B為焦點且過D點的橢圓。(1)求橢圓的方程;(2)點P在橢圓C上運動,點Q在圓A上運動,求PQ+PD的最大值。
,
解:(1)由可得
橢圓方程為.
(2)
=2
所以P在DB延長線與橢圓交點處,Q在PA延長線與圓的交點處,得到最大值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

是橢圓上一點,是橢圓的兩個焦點,求的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓>0,>0)的左焦點為F,右頂點為A,上頂點為B,若
BF⊥BA,則稱其為“優(yōu)美橢圓”,那么“優(yōu)美橢圓”的離心率為      。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(1,1)為橢圓=1內(nèi)一點,F1為橢圓左焦點,P為橢圓上一動點 求|PF1|+|PA|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓=1(ab>0),點P為其上一點,F1F2為橢圓的焦點,∠F1PF2的外角平分線為l,點F2關于l的對稱點為Q,F2Ql于點R.

(1)當P點在橢圓上運動時,求R形成的軌跡方程;
(2)設點R形成的曲線為C,直線l: y=k(x+a)與曲線C相交于A、B兩點,當△AOB的面積取得最大值時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點,長軸在x軸上的橢圓的兩準線間的距離為2,若橢圓被直線x+y+1=0截得的弦的中點的橫坐標是,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



,求點Q的軌跡方程,并說明軌跡是什么曲線。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程4x2+Ry2=1的曲線是焦點在y軸上的橢圓,則R的取值范圍是
A.R>0B.0<R<2
C.0<R<4D.2<R<4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果雙曲線上的一點到左焦點的距離是,則點到左準線的距離為(       )
A.B.C.D.

查看答案和解析>>

同步練習冊答案