解:(1)f(x)=cos
=
+
•(1+cos2x)=sin(x+
)+
.
∵當x
,∴x+
∈
,∴sin(x+
)∈[-
,1],
∴f(x)的值域為[
,
].
(2)將函數(shù)f(x)的圖象向右平移h(0<h<π)個單位,得到函數(shù)g(x)=sin(x-h+
)+
的圖象.
再由g(x)的圖象關于直線x=
對稱,可得 x-h+
=kπ+
,k∈z.
即 h=-kπ+
,∴h=
,故函數(shù)g(x)=sin(x+
)+
.
令2kπ-
≤x+
≤2kπ+
,k∈z,求得 kπ-
≤x≤kπ+
,k∈z,
故函數(shù)的增區(qū)間為[kπ-
,kπ+
],k∈z.
分析:(1)利用三角函數(shù)的恒等變換化簡函數(shù)f(x)的解析式為 sin(x+
)+
,根據(jù)x的范圍求出f(x)的值域.
(2)根據(jù)y=Asin(ωx+∅)的圖象變換規(guī)律求得g(x)=sin(x-h+
)+
,由g(x)的圖象關于直線x=
對稱,可得 x-h+
=kπ+
,k∈z,求出h的值,可得g(x)的解析式為g(x)=sin(x+
)+
,令2kπ-
≤x+
≤2kπ+
,k∈z,求得x的范圍,即可求得函數(shù)的增區(qū)間.
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的單調性,y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.