(2009•東營一模)已知向量:
a
=(2sinωx,cos2ωx),向量
b
=(cosωx,2
3
),其中ω>0,函數(shù)f(x)=
a
b
,若f(x)圖象的相鄰兩對稱軸間的距離為π.
(1)求f(x)的解析式;
(2)若對任意實數(shù)x∈[
π
6
,
π
3
]
,恒有|f(x)-m|<2成立,求實數(shù)m的取值范圍.
分析:(1)直接利用向量的數(shù)量積以及二倍角公式兩角和的正弦函數(shù)化簡函數(shù)表達式,求出函數(shù)的周期,即可求f(x)的解析式;
(2)通過x∈[
π
6
,
π
3
]
,求出相位的范圍,確定函數(shù)的值域,然后利用|f(x)-m|<2,得到m的關系式,求實數(shù)m的取值范圍
解答:解:(1)f(x)=
a
b
=(2sinωx,cos2ωx)•(cosωx,2
3
)=sin2ωx+
3
(1+cos2ωx)

=2sin(2ωx+
π
3
)+
3

∵相鄰兩對稱軸的距離為π,∴
=2π
,∴ω=
1
2

f(x)=2sin(x+
π
3
)+
3

(2)∵x∈[
π
6
,
π
3
]
,∴x+
π
3
∈[
π
2
,
3
]

2
3
≤f(x)≤2+
3

又∵|f(x)-m|<2,∴-2+m<f(x)<2+m
若對任意x∈[
π
6
,
π
3
]
,恒有|f(x)-m|<2成立,則有
-2+m≤2
3
2+m≥2+
3

解得
3
≤m≤4+2
3
點評:本題考查向量的數(shù)量積,兩角和與差的三角函數(shù)二倍角公式的應用,函數(shù)恒成立問題的應用,考查轉(zhuǎn)化思想與計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)已知函數(shù)f(x)=x3+ax2+bx+c在x=1與x=-
2
3
時,都取得極值.
(1)求a,b的值;
(2)若f(-1)=
3
2
,求f(x)的單調(diào)區(qū)間和極值;
(3)若對x∈[-1,2]都有f(x)<
3
c
恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)箱子中裝有6張卡片,分別寫有1到6這6個整數(shù).從箱子中任意取出一張卡片,記下它的讀數(shù)x,然后放回箱子,第二次再從箱子中取出一張卡片,記下它的讀數(shù)y,試求:
(Ⅰ)x+y是5的倍數(shù)的概率;
(Ⅱ)x-y是3的倍數(shù)的概率;
(Ⅲ)x,y中至少有一個5或6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)設命題P:函數(shù)f(x)=x+
a
x
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)對有n(n≥4)個元素的總體{1,2,…,n}進行抽樣,先將總體分成兩個子總體{1,2,…,m}和{m+1,m+2,…,n}(m是給定的正整數(shù),且2≤m≤n-2),再從每個子總體中各隨機抽取2個元素組成樣本.用Pij表示元素i和j同時出現(xiàn)在樣本中的概率,則P1n=
4
m(n-m)
4
m(n-m)
; 所有Pij(1≤i<j≤n)的和等于
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)若
lim
x→2
x2+ax-2
x2-4
=
3
4
,則a的值為(  )

查看答案和解析>>

同步練習冊答案