設(shè)是橢圓上兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(異于點(diǎn)),若直線分別交軸于點(diǎn),則(     )
A.0B.1C.D.2
D

試題分析:(特例法)不妨設(shè),則,.選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓.
(1)我們知道圓具有性質(zhì):若為圓O:的弦AB的中點(diǎn),則直線AB的斜率與直線OE的斜率的乘積為定值。類(lèi)比圓的這個(gè)性質(zhì),寫(xiě)出橢圓的類(lèi)似性質(zhì),并加以證明;
(2)如圖(1),點(diǎn)B為在第一象限中的任意一點(diǎn),過(guò)B作的切線,分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求三角形OCD面積的最小值;
(3)如圖(2),過(guò)橢圓上任意一點(diǎn)的兩條切線PM和PN,切點(diǎn)分別為M,N.當(dāng)點(diǎn)P在橢圓上運(yùn)動(dòng)時(shí),是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請(qǐng)說(shuō)明理由.
    
圖(1)                                    圖(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點(diǎn)分別為,其上頂點(diǎn)為已知是邊長(zhǎng)為的正三角形.

(1)求橢圓的方程;
(2)過(guò)點(diǎn)任作一動(dòng)直線交橢圓兩點(diǎn),記.若在線段上取一點(diǎn),使得,當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)在某一定直線上運(yùn)動(dòng),求出該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(5分)(2011•福建)設(shè)圓錐曲線r的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,若曲線r上存在點(diǎn)P滿足|PF1|:|F1F2|:|PF2|=4:3:2,則曲線r的離心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過(guò)作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過(guò)作直線.求直線是否恒過(guò)定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的( 。
A.7倍B.5倍C.4倍D.3倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,過(guò)點(diǎn)且離心率為.

(1)求橢圓的方程;
(2)已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)M滿足,連接AM交橢圓于點(diǎn)P,在x軸上是否存在異于A、B的定點(diǎn)Q,使得直線BP和直線MQ垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓截得的最大弦長(zhǎng)等于(  )
A.4B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案