考點(diǎn):正弦函數(shù)的奇偶性,正弦函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先判斷函數(shù)的奇偶性,進(jìn)一步判斷函數(shù)的單調(diào)性,在判斷函數(shù)的單調(diào)性時(shí)分兩步驟,最后對(duì)已知條件進(jìn)行恒等變換f(x1)+f(x2)>0,f(x1)>-f(x2)=f(-x2),進(jìn)一步利用所求出的結(jié)論求的結(jié)果.
解答:
解:(1)已知函數(shù)f(x)=2x+sinx+
①x∈R
②f(-x)=2(-x)+sin(-x)+
=-(2x+sinx+
)=-f(x)
則:函數(shù)f(x)為奇函數(shù).
(2)令f(x)=k(x)+p(x)即k(x)=2x+sinx,p(x)=
①則:k′(x)=2-cosx>0
所以:k(x)為增函數(shù).
p(x)=
=1-
由于3
x在x∈R為單調(diào)遞增函數(shù),進(jìn)一步求得p(x)=1-
也為單調(diào)遞增函數(shù).
故f(x)為單調(diào)遞增函數(shù).
∵f(x
1)+f(x
2)>0,
∴f(x
1)>-f(x
2)=f(-x
2)
利用函數(shù)的單調(diào)性解得:x
1>-x
2即x
1+x
2>0
故選:D
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):函數(shù)的單調(diào)性和奇偶性的應(yīng)用,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,及相關(guān)的恒等變換.