已知定點
,
,
是圓
:
上任意一點,點
關于點
的對稱點為
,線段
的中垂線與直線
相交于點
,則點
的軌跡是
試題分析:由N是圓O:x2+y2=1上任意一點,可得ON=1,且N為MF1的中點可求MF2,結合已知由垂直平分線的性質(zhì)可得PM=PF1,從而可得|PF2-PF1|=|PF2-PM|=MF2=2為定值,由雙曲線的定義可得點P得軌跡是以F1,F(xiàn)2為焦點的雙曲線解:連接ON,由題意可得ON=1,且N為MF1的中點∴MF2=2,∵點F1關于點N的對稱點為M,線段F1M的中垂線與直線F2M相交于點P,由垂直平分線的性質(zhì)可得PM=PF1,∴|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,由雙曲線的定義可得點P得軌跡是以F1,F(xiàn)2為焦點的雙曲線,故選:B
點評:本題以圓為載體,考查了利用雙曲線的定義判斷圓錐曲線的類型的問題,解決本題的關鍵是由N為圓上一點可得ON=1,結合N為MF1的中點,由三角形中位線的性質(zhì)可得MF2=2,還要靈活應用垂直平分線的性質(zhì)得到解決本題的第二個關鍵點|PF2-PF1|=|PF2-PM|=MF2=2<F1F2,從而根據(jù)圓錐曲線的定義可求解,體現(xiàn)了轉化思想的應用.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,經(jīng)過點
的動直線
,與橢圓
:
(
)相交于
,
兩點. 當
軸時,
,當
軸時,
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
的中點為
,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過拋物線
的焦點
且傾斜角為
的直線
與拋物線在第一、四象限分別交于
兩點,則
等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過直線
上一點
作圓
的切線
,若
關于直線
對稱,則點
到圓心
的距離為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
極坐標系與直角坐標系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線C
l的極坐標方程為
,曲線C
2的參數(shù)方程為
為參數(shù))。
(1)當
時,求曲線C
l與C
2公共點的直角坐標;
(2)若
,當
變化時,設曲線C
1與C
2的公共點為A,B,試求AB中點M軌跡的極坐標方程,并指出它表示什么曲線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,已知
,
,
,
,其中
.設直線
與
的交點為
,求動點
的軌跡的參數(shù)方程(以
為參數(shù))及普通方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
動點
到兩定點
,
連線的斜率的乘積為
(
),則動點P在以下哪些曲線上( )(寫出所有可能的序號)
① 直線 ② 橢圓 ③ 雙曲線 ④ 拋物線 ⑤ 圓
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設直線
是曲線
的一條切線,
.
(Ⅰ)求切點坐標及
的值;
(Ⅱ)當
時,存在
,求實數(shù)
的取值范圍.
查看答案和解析>>