已知橢圓C的一個(gè)焦點(diǎn),經(jīng)過點(diǎn),對(duì)稱軸為坐標(biāo)軸.

(1)求橢圓C的方程;

(2)過點(diǎn)的直線l交橢圓C于M、N兩點(diǎn),線段MN中點(diǎn)為Q,點(diǎn)B(-1,0),當(dāng)l⊥QB時(shí),求直線l的方程.

答案:
解析:

  (1)設(shè)

  

  ……①

  又橢圓過點(diǎn)……②

  聯(lián)立①、②解得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的一個(gè)焦點(diǎn)F與拋物線y2=12x的焦點(diǎn)重合,且橢圓C上的點(diǎn)到焦點(diǎn)F的最大距離為8.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P(m,n)是橢圓C上的一動(dòng)點(diǎn),求直線l:mx+ny=1被圓O:x2+y2=1所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn)P,過點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點(diǎn)O、半徑是
a2+b2
的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為F(
2
,0)
,其短軸的一個(gè)端點(diǎn)到點(diǎn)F的距離為
3

(1)求橢圓C和其“準(zhǔn)圓”的方程;
(2)過橢圓C的“準(zhǔn)圓”與y軸正半軸的交點(diǎn)P作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)交點(diǎn),求l1,l2的方程;
(3)若點(diǎn)A是橢圓C的“準(zhǔn)圓”與x軸正半軸的交點(diǎn),B,D是橢圓C上的兩相異點(diǎn),且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的一個(gè)焦點(diǎn)為F(0,1),過點(diǎn)F且垂直于長軸的直線被橢圓C截得的弦長為
2
;P,Q,M,N為橢圓C上的四個(gè)點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若
PF
FQ
,
MF
FN
PF
FM
=0
,求四邊形PMQN的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分)

給定橢圓C:,稱圓心在原點(diǎn)O、半徑是的圓為橢圓C的“準(zhǔn)圓”.已知橢圓C的一個(gè)焦點(diǎn)為,其短軸的一個(gè)端點(diǎn)到點(diǎn)的距離為

(1)求橢圓C和其“準(zhǔn)圓”的方程;

(2)若點(diǎn)是橢圓C的“準(zhǔn)圓”與軸正半軸的交點(diǎn),是橢圓C上的兩相異點(diǎn),且軸,求的取值范圍;

(3)在橢圓C的“準(zhǔn)圓”上任取一點(diǎn),過點(diǎn)作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案