若函數(shù)f(x)=x3-12x在(k-1,k+1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍為
(-3,-1)∪(1,3)
(-3,-1)∪(1,3)
分析:由題意得,區(qū)間(k-1,k+1)內(nèi)必須含有導(dǎo)函數(shù)的零點(diǎn)2或-2,即k-1<2<k+1或k-1<-2<k+1,解之即可求出實(shí)數(shù)k的取值范圍.
解答:解:由題意可得f′(x)=3x2-12 在區(qū)間(k-1,k+1)上至少有一個(gè)零點(diǎn),
而f′(x)=3x2-12的零點(diǎn)為±2,區(qū)間(k-1,k+1)的長(zhǎng)度為2,
故區(qū)間(k-1,k+1)內(nèi)必須含有2或-2.
∴k-1<2<k+1或k-1<-2<k+1,
∴1<k<3 或-3<k<-1,
故答案為:(-3,-1)∪(1,3).
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,把函數(shù)在區(qū)間上不是單調(diào)函數(shù)轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有零點(diǎn)是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實(shí)數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊(cè)答案