設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,則q的值為
 
分析:首先由Sn+1,Sn,Sn+2成等差數(shù)列,可得2Sn=Sn+1+Sn+2,然后利用等比數(shù)列的求和公式分別表示Sn+1,Sn,Sn+2,注意分q=1和q≠1兩種情況討論,解方程即可.
解答:解:設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,且Sn+1,Sn,Sn+2成等差數(shù)列,則2Sn=Sn+1+Sn+2,
若q=1,則Sn=na1,式顯然不成立,
若q≠1,則為2
a1(1-qn)
1-q
=
a1(1-qn+1)
1-q
+
a1(1-qn+2)
1-q

故2qn=qn+1+qn+2,
即q2+q-2=0,
因此q=-2.
故答案為-2.
點(diǎn)評(píng):涉及等比數(shù)列求和時(shí),若公比為字母,則需要分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若8a2+a5=0,則下列式子中數(shù)值不能確定的是( 。
A、
a5
a3
B、
S5
S3
C、
an+1
an
D、
Sn+1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,巳知S10=∫03(1+2x)dx,S20=18,則S30=
21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S6
=( 。
A、
1
2
B、
7
3
C、
8
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的前n 項(xiàng)和為Sn,若
S6
S3
=3,則
S9
S3
=
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案