將如圖1的直角梯形ABEF(圖中數(shù)字表示對應線段的長度)沿直線CD折成直二面角,連結(jié)部分線段后圍成一個空間幾何體,如圖2所示.

(1)證明:

(2)設M是FB的中點,求證直線EM平面BDF

                                                                  

證明:(1)CE//DF , CE 平面DAF,DF平面DAF∴CE∥平面DAF,

BC//AD BC平面DAF,且DF平面DAF,BC∥平面DAF,

  CE BC=C 平面CBE/ /平面DAF         ……………………………. 4分

                BEB平面CBE

                BE//平面ADF  ………………………………………………..5分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥CD,∠ABC=90°,CD=BC=1,AB=2,E為AB的中點,將△ADE沿DE翻折至△A′DE,使二面角A′-DE-B為直二面角.
(1)若F、G分別為A′D、EB的中點,求證:FG∥平面A′BC;
(2)求二面角D-A′B-C度數(shù)的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點E、F分別是PC、BD的中點,現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
(1)求證:EF∥平面PAD;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,直角梯形ABCD中,AD∥BC,AD⊥CD,AD=2BC=2CD=4,E為AD的中點,將△ABE沿BE折起,使二面角A-BE-C是直二面角,并連接AC,AD得到四棱錐A-BCDE,如圖2.
(1)求四棱錐A-BCDE的體積;
(2)若M,N分別是BC,AD的中點,求證:MN∥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+
2
,過A作AE⊥CD,垂足為E.G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使二面角D-AE-C的平面角為135°.
(Ⅰ)求證:FG∥平面BCD; 
(Ⅱ)求異面直線GF與BD所成角的余弦值; 
(Ⅲ)求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,直角梯形ABCD中,AD∥BC,AD⊥CD,AD=2BC=2CD=4,E為AD的中點,將△ABE沿BE折起,使二面角A-BE-C是直二面角,并連接AC,AD得到四棱錐A-BCDE,如圖2.
(1)求四棱錐A-BCDE的體積;
(2)若M,N分別是BC,AD的中點,求證:MN∥平面ABE.

查看答案和解析>>

同步練習冊答案