【題目】已知直線,求:
(1)點P(4,5)關(guān)于l的對稱點;
(2)直線x-y-2=0關(guān)于直線l對稱的直線方程.
【答案】(1) (-2,7)(2) 7x+y+22=0
【解析】
(1)設(shè)P(x,y)關(guān)于直線:3x-y+3=0的對稱點為,則有和PP'的中點在直線3x-y+3=0上,列方程組求解即可;
(2)將(1)中關(guān)于關(guān)于l的對稱點的解代入x-y-2=0中的x,y即可得解.
(1)設(shè)P(x,y)關(guān)于直線:3x-y+3=0的對稱點為則
∵,即.①
又PP'的中點在直線3x-y+3=0上,
∴.②
由①②得.
把x=4,y=5代入③④得=-2,=7,
∴P(4,5)關(guān)于直線的對稱點的坐標(biāo)為(-2,7).
(2)用③④分別代換x-y-2=0中的x,y得關(guān)于的對稱直線方程為
.
化簡得7x+y+22=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大;
(Ⅱ)若cosBcosC=﹣ ,且△ABC的面積為2 ,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過點,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓長軸上一點作兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于的線性回歸方程;
(2)判斷y與之間是正相關(guān)還是負(fù)相關(guān)?
(3)預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點.
(1)證明:直線CE∥平面PAB;
(2)點M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校書法興趣組有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機選出2人參加書法比賽每人被選到的可能性相同.
用表中字母列舉出所有可能的結(jié)果;
設(shè)M為事件“選出的2人來自不同年級且性別相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x,y的不等式組 表示的平面區(qū)域內(nèi)存在點P(x0 , y0),滿足x0﹣2y0=2,求得m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣10|+|x﹣20|,且滿足f(x)<10a+10(a∈R)的解集不是空集.
(Ⅰ)求實數(shù)a的取值集合A
(Ⅱ)若b∈A,a≠b,求證aabb>abba .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com