【題目】未來創(chuàng)造業(yè)對零件的精度要求越來越高.打印通常是采用數(shù)字技術(shù)材料打印機來實現(xiàn)的,常在模具制造、工業(yè)設(shè)計等領(lǐng)域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術(shù)打印而成的零部件.該技術(shù)應(yīng)用十分廣泛,可以預(yù)計在未來會有發(fā)展空間.某制造企業(yè)向高校打印實驗團隊租用一臺打印設(shè)備,用于打印一批對內(nèi)徑有較高精度要求的零件.該團隊在實驗室打印出了一批這樣的零件,從中隨機抽取個零件,度量其內(nèi)徑的莖葉圖如圖(單位:).

(1)計算平均值與標準差

(2)假設(shè)這臺打印設(shè)備打印出品的零件內(nèi)徑服從正態(tài)分布,該團隊到工廠安裝調(diào)試后,試打了個零件,度量其內(nèi)徑分別為(單位:):、、,試問此打印設(shè)備是否需要進一步調(diào)試?為什么?

參考數(shù)據(jù):,,.

【答案】(1) (2) 機器異常,需要進一步調(diào)試

【解析】

(1)由均值與方差的定義公式計算;

(2)由正態(tài)分布求得概率后知零件內(nèi)徑在外的概率只有0.0026,而外,因此機器異常.

(1) ,

,

所以.

(2)結(jié)論:需要進一步調(diào)試.

理由如下:如果機器正常工作,則服從正態(tài)分布,

,

零件內(nèi)徑在之外的概率只有

,根據(jù)原則,知機器異常,需要進一步調(diào)試.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實數(shù);

(2)存在一個實數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù))

(Ⅰ)求直線的直角坐標方程和曲線的普通方程;

)若過且與直線垂直的直線與曲線相交于兩點,,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于,與橢圓分別交于不同四點,直線的斜率滿足.已知當軸重合時,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點使得為定值?若存在,求出點坐標并求出此定值;若不存在,說明理由.

【答案】(Ⅰ),.

【解析】試題分析:(1)當軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標化,可得點的軌跡是橢圓,從而求得定點和點.

試題解析:軸重合時,, ,所以垂直于軸,得,,, ,橢圓的方程為.

焦點坐標分別為, 當直線斜率不存在時,點坐標為;

當直線斜率存在時,設(shè)斜率分別為, 設(shè), 得:

, 所以:,, 則:

. 同理:, 因為

, 所以, , 由題意知, 所以

, 設(shè),則,即,由當直線斜率不存在時,點坐標為也滿足此方程,所以點在橢圓.存在點和點,使得為定值,定值為.

考點:圓錐曲線的定義,性質(zhì),方程.

【方法點晴】本題是對圓錐曲線的綜合應(yīng)用進行考查,第一問通過兩個特殊位置,得到基本量,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.

型】解答
結(jié)束】
21

【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個零點為,記,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某實驗室一天的溫度(單位:)隨時間(單位:)的變化近似滿足函數(shù)關(guān)系:.

(Ⅰ)求實驗室這一天的最大溫差;

(Ⅱ)若要求實驗室溫度不高于,則在哪段時間實驗室需要降溫?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列不等式的解集:

1

2

3

4

5

6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個負數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是底面邊長為1的正三棱錐,分別為棱長上的點,截面底面,且棱臺與棱錐的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)證明:為正四面體;

(2)若,求二面角的大小;(結(jié)果用反三角函數(shù)值表示)

(3)設(shè)棱臺的體積為,是否存在體積為且各棱長均相等的直平行六面體,使得它與棱臺有相同的棱長和?若存在,請具體構(gòu)造出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺,本題中棱臺的體積等于棱錐的體積減去棱錐的體積.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,如將年人流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨立.

(1)求未來4年中,至多有1年的年入流量超過120的概率;(,

(2)水電站希望安裝的發(fā)電機盡可能運行最多,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關(guān)系:

年流入量

發(fā)電機最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為4000萬元,若某臺發(fā)電機未運行,則該臺年虧損600萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

同步練習(xí)冊答案