設(shè)橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點(diǎn)為F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),則∠F1PF2=______.
由題意知F1(-2,0),F(xiàn)2(2,0),
解方程組
x2
6
+
y2
2
=1
x2
2
-
y2
2
=1
x2=3
y2=1

取P點(diǎn)坐標(biāo)為(
3
,1
),
PF1
=(-2-
3
,-1)
,
PF2
=(2-
3
,-1)

PF1
PF2
=(-2-
3
)(2-
3
)+1
=0
∴cos∠F1PF2=0,則∠F1PF2=90°
故答案為:90°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
16
=1
的準(zhǔn)線方程是( 。
A.x=±
25
3
B.y=±
25
3
C.x=±
25
4
D.y=±
25
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P為橢圓
x2
45
+
y2
20
=1上且位于在第三象限內(nèi)一點(diǎn),且它與兩焦點(diǎn)連線互相垂直,若點(diǎn)P到直線4x-3y-2m+1=0的距離不大于3,則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知經(jīng)過橢圓4x2+8y2=1右焦點(diǎn)F2的直線與橢圓有兩個(gè)交點(diǎn)A,B,F(xiàn)1是橢圓的左焦點(diǎn),則△F1AB的周長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知一個(gè)橢圓的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,且過D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若P是橢圓上的動(dòng)點(diǎn),點(diǎn)A(1,0),求線段PA中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
5
4
,離心率為
2
3
,則橢圓的短軸長為( 。
A.
5
2
B.4
5
C.2
5
D.
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,其左、右兩焦點(diǎn)分別為F1、F2.直線L經(jīng)過橢圓C的右焦點(diǎn)F2,且與橢圓交于A、B兩點(diǎn).若A、B、F1構(gòu)成周長為4
2
的△ABF1,橢圓上的點(diǎn)離焦點(diǎn)F2最遠(yuǎn)距離為
2
+1
,且弦AB的長為
4
2
3
,求橢圓和直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,橢圓中心在坐標(biāo)原點(diǎn),F(xiàn)為左焦點(diǎn),當(dāng)
FB
AB
時(shí),其離心率為
5
-1
2
,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率為(  )
A.
5
+1
2
B.
5
-1
2
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

動(dòng)點(diǎn)P為橢圓
x2
25
+
y2
16
=1
上任意一點(diǎn),左右焦點(diǎn)分別是F1,F(xiàn)2,直線l為∠F1PF2的外角平分線,過F1作直線l的垂線,垂足為Q,則點(diǎn)Q的軌跡方程是( 。
A.x2+y2=25B.x2+y2=16C.x2-y2=25D.x22y2=16

查看答案和解析>>

同步練習(xí)冊(cè)答案