A. | (0,1) | B. | (-1,1) | C. | (0,+∞) | D. | (1,+∞) |
分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)小于0求出自變量x在定義域內(nèi)的取值范圍,則原函數(shù)的單調(diào)減區(qū)間可求.
解答 解:由f(x)=x2-2lnx,得:f′(x)=(x2-2lnx)′=2x$-\frac{2}{x}$.
因為函數(shù)f(x)=x2-2lnx的定義域為(0,+∞),
由f′(x)<0,得:2x$-\frac{2}{x}$<0,即(x+1)(x-1)<0,
解得:0<x<1.
所以函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(0,1).
故選:A.
點評 本題主要考查導(dǎo)函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若K2的觀測值為k=6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺病 | |
B. | 若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤 | |
C. | 從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關(guān)系時,我們說某人吸煙,那么他有99%的可能患有肺病 | |
D. | 以上三種說法都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com