一個(gè)體積為
44
3
的正三棱柱(即底面為正三角形,側(cè)棱垂直地面)的三視圖如圖所示,則這個(gè)三棱柱的左視圖的面積為
 
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專題:計(jì)算題,空間位置關(guān)系與距離
分析:求出底面的邊長(zhǎng)為4,面積為4
3
,利用體積求出高,即可求出三棱柱的左視圖的面積.
解答: 解:由題意,底面的邊長(zhǎng)為4,面積為4
3

設(shè)高為h,則4
3
h=
44
3
,∴h=
11
3
3
,
∴三棱柱的左視圖的面積為
11
3
3
×2
3
=
22
3
,
故答案為:
22
3
點(diǎn)評(píng):本題考查簡(jiǎn)單空間圖形的三視圖,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點(diǎn)M(1,5),傾斜角是
π
3

①求直線l的參數(shù)方程;
②求直線l與直線x-y-2
3
=0的交點(diǎn)與點(diǎn)M的距離;
③在圓C:(x-2)2+y2=4上找一點(diǎn)Q使點(diǎn)Q到直線l的距離最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-ax2
ex
(a∈R),
(1)若a=
1
3
,求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
1
sin10°
-
3
cos10°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈R,則x=2”是“(x-2)(x-1)=0”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},若點(diǎn)(n,an)(n∈N*)在經(jīng)過點(diǎn)(8,4)的定直線l上,則數(shù)列{an}的前15項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1+x2
,x∈(0,1).
(1)設(shè)x1,x2∈(0,1),證明:(x1-x2)•[f(x1)-f(x2)]≥0;
(2)設(shè)a,b,c∈R+,且a+b+c=1,求u=
3a2-a
1+a2
+
3b2-b
1+b2
+
3c2-c
1+c2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
1
2
x2+bx+c.
(1)若f(x)在R上單調(diào)遞增,求b的取值范圍;
(2)若f(x)在x=1時(shí)取得極值,且x∈[-1,2]時(shí),f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于空間的一條直線m和兩個(gè)平面α,β,下列命題中的真命題是(  )
A、若m∥α,m∥β,則α∥β
B、若m∥α,m∥β,則α⊥β
C、若m⊥α,m⊥β,則α∥β
D、若m⊥α,m⊥β,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案