..(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
(理)如圖,已知矩形的邊與正方形所在平面垂直,,是線段的中點。
(1)求證:平面;
(2)求二面角的大小。
(理)解:(1)建立如圖所示的空間直角坐標系,則……………… 2分
設平面的一個法向量為,則
,得平面的一個法向量為,…………………………6分
,
所以,又因為直線不在平面內(nèi),所以平面。
……………………………………………6分
(2)由(1)知平面的一個法向量為,而平面的一個法向量為
……………………………… 11分
所以向量與向量的夾角,從圖中可以看出二面角為銳二面角,所以所求二面角的大小是。  …………… 12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,正四棱錐中,AB=1,側(cè)棱與底面所成角的正切值為.
(1)求二面角P-CD-A的大小.
(2)設點F在AD上,,求點A到平面PBF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體中, 的中點為,的中點為,則異
面直線所成的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱柱,底面為正三角形,平面,,中點.
(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形為平行四邊形,,⊥平面,,.
(1)若是線段的中點,求證:∥平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三條不重合的直線兩個不重合的平面,給出下列四個命題:
①若
②若;
③若;
④若. 其中真命題是       (   )
A.① ②B.③ ④C.① ③D.② ④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐中,⊥底面,,

(1)求證:⊥平面;
(2)求二面角的平面角的余弦值;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知長方體的全面積11,十二條棱的長之和為24,則這個長方體的一條對角線的長為(    )
A.2B.C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖4,點P在長方體ABCDA1B1C1D1的面對角線BC1(線段BC1)上運動,給出下列四個命題:
①直線AD與直線B1P為異面直線;
②恒有A1P∥面ACD1;
③三棱錐AD1PC的體積為定值;
④當且僅當長方體各棱長都相等時,面PDB1⊥面ACD1
其中所有正確命題的序號是         
 

查看答案和解析>>

同步練習冊答案