【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)“忽如一夜春風(fēng)來(lái)”,遍布了各級(jí)城市的大街小巷,為了解我市的市民對(duì)共享單車(chē)的滿(mǎn)意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析.若得分低于分,說(shuō)明不滿(mǎn)意,若得分不低于分,說(shuō)明滿(mǎn)意,調(diào)查滿(mǎn)意度得分情況結(jié)果用莖葉圖表示如圖1.
(Ⅰ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿(mǎn)意度與年齡有關(guān);
滿(mǎn)意 | 不滿(mǎn)意 | 合計(jì) | |
歲以下 | |||
歲以上 | |||
合計(jì) |
(Ⅱ)先采用分層抽樣的方法從歲及以下的網(wǎng)友中選取人,再?gòu)倪@人中隨機(jī)選出人,將頻率視為概率,求選出的人中至少有人是不滿(mǎn)意的概率.
(Ⅲ)將頻率視為概率,從參與調(diào)查的歲以上的網(wǎng)友中,隨機(jī)選取人,記其中滿(mǎn)意度為滿(mǎn)意的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考格式:,其中.
【答案】(Ⅰ)見(jiàn)解析,沒(méi)有的把握認(rèn)為滿(mǎn)意度與年齡有關(guān);(Ⅱ);(Ⅲ)見(jiàn)解析, .
【解析】
(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)可完善列聯(lián)表,并計(jì)算出的觀測(cè)值,利用臨界值表可得出結(jié)論;
(Ⅱ)采用分層抽樣的方法從歲以下的網(wǎng)友中選取人,其中滿(mǎn)意度為滿(mǎn)意的有人,不滿(mǎn)意的有人,利用組合計(jì)數(shù)原理和古典概型的概率公式可求得所求事件的概率;
(Ⅲ)由題意可知,隨機(jī)變量的可能取值有:、、、,分別計(jì)算出隨機(jī)變量在不同取值下的概率,可得出隨機(jī)變量的分布列,進(jìn)而可計(jì)算出隨機(jī)變量的數(shù)學(xué)期望.
(Ⅰ)由莖葉圖可得列聯(lián)表如下:
滿(mǎn)意 | 不滿(mǎn)意 | 合計(jì) | |
歲以下 | |||
歲以上 | |||
合計(jì) |
可知,
所以沒(méi)有的把握認(rèn)為滿(mǎn)意度與年齡有關(guān);
(Ⅱ)采用分層抽樣的方法從歲以下的網(wǎng)友中選取人,其中滿(mǎn)意度為滿(mǎn)意的有人,不滿(mǎn)意的有人,所有組合的情況共有種,
其中選出的人中至少有人是不滿(mǎn)意的有種,故所求的概率;
(Ⅲ)的可能取值為、、、,
,,,.
所以,隨機(jī)變量的分布列如下表所示:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面為菱形,且,E為的中點(diǎn).
(1)求證:平面平面;
(2)棱上是否存在點(diǎn)F,使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的參數(shù)方程是 (是參數(shù), ),直線(xiàn)的參數(shù)方程是 (是參數(shù)),曲線(xiàn)與直線(xiàn)有一個(gè)公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(1)求曲線(xiàn)的極坐標(biāo)方程;
(2)若點(diǎn),,在曲線(xiàn)上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)當(dāng)時(shí),若不等式在時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中a,.
(1)若函數(shù)在處取得極小值,求a,b的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若函數(shù)在上只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某外賣(mài)企業(yè)兩位員工今年月某天日派送外賣(mài)量的數(shù)據(jù)(單位:件),如莖葉圖所示針對(duì)這天的數(shù)據(jù),下面說(shuō)法錯(cuò)誤的是( )
A.阿朱的日派送量的眾數(shù)為B.阿紫的日派送量的中位數(shù)為
C.阿朱的日派送量的中位數(shù)為D.阿朱的日派送外賣(mài)量更穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,與圓的另一個(gè)交點(diǎn)為.
當(dāng)時(shí),求直線(xiàn)的斜率;
是否存在,使?若存在,求出直線(xiàn)的斜率;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知焦點(diǎn)在x軸上,離心率為的橢圓E的左頂點(diǎn)為A,點(diǎn)A到右準(zhǔn)線(xiàn)的距離為6.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)A且斜率為的直線(xiàn)與橢圓E交于點(diǎn)B,過(guò)點(diǎn)B與右焦點(diǎn)F的直線(xiàn)交橢圓E于M點(diǎn),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com