[2014·綿陽模擬]在平面直角坐標系xOy中,橢圓C:=1的左、右焦點分別是F1、F2,P為橢圓C上的一點,且PF1⊥PF2,則△PF1F2的面積為________.
9
∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.
由橢圓方程知a=5,b=3,∴c=4.
,
解得|PF1|·|PF2|=18.
∴△PF1F2的面積為|PF1|·|PF2|=×18=9.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓經(jīng)過點
(1)求橢圓的方程及其離心率;
(2)過橢圓右焦點的直線(不經(jīng)過點)與橢圓交于兩點,當的平分線為 時,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:(x-4)2+(y-m)2=16(m∈N*),直線4x-3y-16=0過橢圓E:=1(a>b>0)的右焦點,且被圓C所截得的弦長為,點A(3,1)在橢圓E上.
(1)求m的值及橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個動點,求·的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖).
(1)求點P的坐標;
(2)焦點在x軸上的橢圓C過點P,且與直線交于A,B兩點,若的面積為2,求C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓上的點M與橢圓右焦點的連線與x軸垂直,且OM(O是坐標原點)與橢圓長軸和短軸端點的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知橢圓的左、右焦點分別、焦距為,且與雙曲線共頂點.為橢圓上一點,直線交橢圓于另一點
(1)求橢圓的方程;
(2)若點的坐標為,求過、三點的圓的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓C1=1(a>b>0)的左、右焦點分別為為,恰是拋物線C2的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
(1)求C1的方程;
(2)平面上的點N滿足,直線l∥MN,且與C1交于A,B兩點,若,求直線l的方程.

查看答案和解析>>

同步練習冊答案