分析 (1)由橢圓的方程,求得橢圓方程坐標,求得雙曲線的焦點坐標,即c=2,由漸近線方程為y=±$\frac{4}{3}$x,則a=3λ,b=4λ,代入a2+b2=c2,求得λ=1,即可求得a和b,即可求得雙曲線C的標準方程;
(2)設(shè)P(x0,y0),由PF1的中點在y軸上,知x0=5,代入即可求得y0=±$\frac{16}{3}$,則${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$•丨F1F2丨•丨y0丨,即可求得△PF1F2的面積.
解答 解:(1)橢圓$\frac{{x}^{2}}{35}$+$\frac{{y}^{2}}{10}$=1的焦點為:(±5,0)…(1分)
∴雙曲線的焦點為:(±5,0),
設(shè)雙曲線方程:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,
∴c=2…(3分)
雙曲線的漸近線方程為y=±$\frac{4}{3}$x,
不妨設(shè)a=3λ,b=4λ(λ>0),
∵a2+b2=c2,
∴λ=1…(5分)
∴雙曲線方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$…(7分)
(2)設(shè)P(x0,y0),又F1(-5,0),
由PF1的中點在y軸上,知x0=5…(9分)
代入雙曲線方程,得y0=±$\frac{16}{3}$…(12分)
∴${S}_{△P{F}_{1}{F}_{2}}$=$\frac{1}{2}$•丨F1F2丨•丨y0丨=$\frac{1}{2}$×10×$\frac{16}{3}$=$\frac{80}{3}$.
△PF1F2的面積為$\frac{80}{3}$.…(14分)
點評 本題考查橢圓及雙曲線的標準方程及簡單性質(zhì),考查三角形的面積公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<3 | B. | 1<a<3 | C. | 2<a<3 | D. | 2≤a<3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=|x| | B. | y=3-x | C. | y=$\frac{1}{x}$ | D. | y=-x2+4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆江西吉安一中高三上學期段考一數(shù)學(文)試卷(解析版) 題型:解答題
某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數(shù)據(jù)并按分數(shù)段,進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖(如圖).
(1)體育成績大于或等于70分的學生常被稱為“體育良好”,已知該校高一年級有1000名學生,試估計高一年級中“體育良好”的學生人數(shù);
(2)為分析學生平時的體育活動情況,現(xiàn)從體育成績在和的樣本學生中隨機抽取2人,求在抽取的2名學生中,至少有1人體育成績在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com