【題目】已知函數(shù)yf(x)的定義域為R,x<0,f(x)>1,且對任意的實數(shù)x、yR,等式f(x)f(y)=f(xy)恒成立.若數(shù)列{an}滿足a1f(0),f(an1)=a2 017的值為(  )

A. 4 033 B. 3 029 C. 2 249 D. 2 209

【答案】A

【解析】

因為是選擇題,可用特殊函數(shù)來研究,根據(jù)條件,底數(shù)小于1的指數(shù)函數(shù)符合題意,可令f(x)=(n,從而很容易地求得則a1=f(0)=1,再由f(an+1)= (nN*),得到an+1=an+2,由等差數(shù)列的定義求得結(jié)果.

根據(jù)題意,不妨設f(x)=(n,則a1=f(0)=1,

f(an+1)= (nN*),(nN*),

an+1=an+2,

∴數(shù)列{an}是以1為首項,以2為公差的等差數(shù)列

an=2n﹣1

a2017=4034-1=4033

故答案為:A

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;

(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,的子集,若,則稱為一個“理想配集”,那么符合此條件的“理想配集”的個數(shù)是________.(規(guī)定是兩個不同的“理想配集”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在是增函數(shù),其圖像如圖所示.

(1)已知,,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)在區(qū)間上的值域;

(2)當時,試討論函數(shù)的單調(diào)性;

(3)若對任意,存在,使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們學習了二元基本不等式:設,,,當且僅當時,等號成立利用基本不等式可以證明不等式,也可以利用“和定積最大,積定和最小”求最值.

(1)對于三元基本不等式請猜想:設 當且僅當時,等號成立(把橫線補全).

(2)利用(1)猜想的三元基本不等式證明:

求證:

(3)利用(1)猜想的三元基本不等式求最值:

的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)為增函數(shù),當x,yR時,恒有fxy)=fx)+fy

(1)求證:fx)是奇函數(shù).

(2)是否存在m,使,對于任意x∈[1,2]恒成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下是某地搜集到的新房屋的銷售價格和房屋的面積的數(shù)據(jù):

(1)畫出數(shù)據(jù)對應的散點圖;

(2)求線性回歸方程,并在散點圖中加上回歸直線;

(3)據(jù)(2)的結(jié)果估計當房屋面積為時的銷售價格.

查看答案和解析>>

同步練習冊答案