判斷下列函數(shù)的奇偶性:
(1)f(x)=x2-2;
(2)f(x)=
x2-1
x
考點:函數(shù)奇偶性的判斷
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:首先求出函數(shù)的定義域,觀察是否關(guān)于原點對稱,再計算f(-x),與f(x)比較,即可判斷(1)、(2)的奇偶性.
解答: 解:(1)x∈R,定義域關(guān)于原點對稱,
f(-x)=(-x)2-2=f(x),
則f(x)是偶函數(shù);
(2)定義域為(-∞,0)∪(0,+∞),
定義域關(guān)于原點對稱
f(-x)+f(x)=-
x2-1
x
+
x2-1
x
=0
,即有f(-x)=-f(x),
則f(x)是奇函數(shù).
點評:本題函數(shù)的奇偶性的判斷,注意運用定義,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=2an+2n+1+1,bn=an-(n+1)•2n+1,其中n∈N*,n≥1.
(Ⅰ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6
1
4
-(π-1)0-(3
3
8
 
1
3
+(
1
64
 -
2
3
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,向量
a
=(x2,1)與
b
=(2,1-3x)垂直,則( 。
A、p是假命題;¬p:?x∈R,向量
a
=(x2,1)與
b
=(2,1-3x)不垂直
B、p是假命題;¬p:?x∈R,向量
a
=(x2,1)與
b
=(2,1-3x)垂直
C、p是真命題;¬p:?x∈R,向量
a
=(x2,1)與
b
=(2,1-3x)不垂直
D、p是真命題;¬p:?x∈R,使得向量
a
=(x2,1)與
b
=(2,1-3x)不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,a1+a2=4,a9+a10=28,則該數(shù)列前10項和S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2|x|-3.
(1)畫出y=f(x)的圖象,并指出y=f(x)的單調(diào)遞增區(qū)間;
(2)判斷y=f(x)的奇偶性,并求y=f(x)的值域;
(3)方程f(x)=k+1有兩解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=1,b=x,∠A=30°,則使△ABC有兩解的x的范圍是( 。
A、(1,
2
3
3
)
B、(1,+∞)
C、(
2
3
3
,2)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=f(x),部分x與y的對應(yīng)關(guān)系如下表:
x123456789
y745813526
數(shù)列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數(shù)y=f(x)的圖象上,則x1+x2+x3+x4的值為( 。
A、12B、14C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
則2x-y的最小值為(  )
A、6B、3C、0D、-3

查看答案和解析>>

同步練習(xí)冊答案