設(shè)函數(shù)f(x)=sinx+tanx,x∈(-
π
2
,
π
2
)
,項(xiàng)數(shù)為25的等差數(shù)列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,則i=______有f(ai)=0.
f(x)=sinx+tanx,x∈(-
π
2
π
2
)
,
∵f(-x)=-f(x)
∴函數(shù)函數(shù)是一個(gè)奇函數(shù),
函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,
∵項(xiàng)數(shù)為25的等差數(shù)列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,
∴中間一項(xiàng)對(duì)應(yīng)的函數(shù)的值是0,
∴當(dāng)i=13時(shí),有f(ai)=0
故答案為:13.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+tanx,x∈(-
π
2
,
π
2
)
,項(xiàng)數(shù)為25的等差數(shù)列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,則i=
 
有f(ai)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx•cosx+
3
cos2x

(1)求f(x)的最小正周期;
(2)已知f(α)=
1
3
+
3
2
,α∈(
π
12
π
3
)
,求cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx-
3
cosx+x+1

(Ⅰ)求函數(shù)f(x)在x=0處的切線方程;
(Ⅱ)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,f′(B)=3且a+c=2,求邊長(zhǎng)b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•薊縣二模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R

(Ⅰ)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]
上的值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
3
2
且a=
3
2
b,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閔行區(qū)二模)設(shè)函數(shù)f(x)=|sinx|+cos2x,x∈[-
π
2
,
π
2
]
,則函數(shù)f(x)的最小值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案