已知a1,a2,a3,a4成等比數(shù)列,且a1=a2+36,a3=a4+4,求a1,a2,a3,a4
分析:設(shè)出公比并表示出a2=a1•q,a3=a1•q2,a4=a1•q3,然后求出公比,進(jìn)而得出a1,從而求出a2,a3,a4的值.
解答:解:設(shè)公比是q,則a2=a1•q,a3=a1•q2,a4=a1•q3
∴a1-a2=a1-a1•q=a1(1-q)=36  ①
a3-a4=a1•q2-a1•q3=a1•q2•(1-q)=4  ②
=q2=
1
9

解得:q=±
1
3

(1)當(dāng)q=
1
3
時(shí),(1-
1
3
)a1=36  解得:a1=54,則a2=18,a3=6,a4=2
(2)當(dāng)q=-
1
3
時(shí),[1-(-
1
3
)]a1=36,解得a1=27,則a2=-9,a3=3,a4=-1
終上所述:
a1,a2,a3,a4的值為:a1=54,a2=18,a3=6,a4=2
                  或:a1=27,a2=-8,a3=3,a4=-1
點(diǎn)評(píng):此題考查了等比數(shù)列的性質(zhì),求出公比q是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1>a2>a3>0,則使得(1-aix)2<1(i=1,2,3)都成立的x取值范圍是( 。
A、(0,
1
a1
)
B、(0,
2
a1
)
C、(0,
1
a3
)
D、(0,
2
a3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1,a2,a3,…,a30是首項(xiàng)為1,公比為2的等比數(shù)列.對(duì)于滿足0<k<30的整數(shù)k,數(shù)列b1,b2,b3,…,b30bn=
an+k,1≤n≤30-k
an+k-30,30-k<n≤30
確定.記C=a1b1+a2b2+…+a30b30
(Ⅰ)當(dāng)k=1時(shí),求C的值;
(Ⅱ)求C最小時(shí)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、已知a1,a2,a3為一等差數(shù)列,b1,b2,b3為一等比數(shù)列,
且這6個(gè)數(shù)都為實(shí)數(shù),則下面四個(gè)結(jié)論:
①a1<a2與a2>a3可能同時(shí)成立;
②b1<b2與b2>b3可能同時(shí)成立;
③若a1+a2<0,則a2+a3<0;
④若b1•b2<0,則b2•b3<0其中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知a1,a2,a3,…,a8為各項(xiàng)都大于零的數(shù)列,則“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比數(shù)列”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1,a2,a3,…,a10這10個(gè)數(shù)的和為45,則當(dāng)函數(shù)f(x)=
10i=1
(x-ai)2
取得最小值時(shí),此時(shí)x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案