A
分析:由函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
可得,
=
,根據(jù)周期公式T=
可得ω=3
函數(shù)f(x)的圖象向左平移m個(gè)單位后所對應(yīng)的函數(shù)g(x)=sin[3(x+m)+
]=sin(3x+3m+
).為偶函數(shù)則根據(jù)偶函數(shù)的性質(zhì)可得對稱軸y軸將取得函數(shù)的最值則3m+
=kπ+
(k∈Z),從而可求m
解答:依題意函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
可得,
=
,
根據(jù)周期公式T=
可得ω=3,
∴f(x)=sin(3x+
).
函數(shù)f(x)的圖象向左平移m個(gè)單位后所對應(yīng)的函數(shù)g(x)=sin[3(x+m)+
]=sin(3x+3m+
).
當(dāng)且僅當(dāng)3m+
=kπ+
(k∈Z),即m=
+
(k∈Z)時(shí),g(x)是偶函數(shù),從而,最小正實(shí)數(shù)m=
.
故選:A
點(diǎn)評:本題主要考查了三角函數(shù)由部分圖象的性質(zhì)求解函數(shù)的解析式,三角函數(shù)的圖象平移及偶函數(shù)的性質(zhì)的綜合應(yīng)用,是一道綜合性較好的試題.