精英家教網 > 高中數學 > 題目詳情

【題目】如圖,邊長為3的正方形所在平面與等腰直角三角形所在平面互相垂直, ,且, .

Ⅰ)求證: 平面;

Ⅱ)求二面角的余弦值.

【答案】)證明見解析 所求二面角的余弦值為

【解析】試題分析:(Ⅰ)考查的是直線與平面平行的判定定理.添加輔助線證明過程中可知平面, 平面,所以只需重點是證明 Ⅱ)考查的是利用平面法向量求二面角的方法.觀察圖象結合已知可知剛好可建立一個坐標系,從而可得 , , ,進而可得的法向量的法向量 ,最后利用公式求出二面角的余弦值.

試題解析:

(Ⅰ)過,連接因為 ,所以 ,所以,

所以四邊形為平行四邊形,故,

平面, 平面,所以平面;

Ⅱ)以為坐標原點, 所在方向為軸正方向,建立平面直角坐標系,

, , ,

平面的法向量為,

設平面的法向量為,則,即,

不妨設,則,

所求二面角的余弦值為.

點晴

在利用線面平行的的判定定理時不僅要關注兩直線直線平行而且另外兩個條件(一直線在平面內,一直線在平面外也不容忽視,大多數情況下這兩個條件在作圖(添加輔助線時就可以清楚表達出,一般不需要單獨證明,但也不能想當然,要仔細觀察,再得出結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,點B是以AC為直徑的圓周上的一點,PA=AB=BC,AC=4,PA⊥平面ABC,點E為PB中點.

(Ⅰ)求證:平面AEC⊥平面PBC;
(Ⅱ)求直線AE與平面PAC所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解某學校高二年級學生的物理成績,從中抽取n名學生的物理成績(百分制)作為樣本,按成績分成 5組:[50,60),[60,70),[70,80),[80,90),[90,100],頻率分布直方圖如圖所示.成績落在[70,80)中的人數為20.

男生

女生

合計

優(yōu)秀

不優(yōu)秀

合計

(Ⅰ)求a和n的值;

(Ⅱ)根據樣本估計總體的思想,估計該校高二學生物理成績的平均數和中位數m;

(Ⅲ)成績在80分以上(含80分)為優(yōu)秀,樣本中成績落在[50,80)中的男、女生人數比為1:2,成績落在[80,100]中的男、女生人數比為3:2,完成2×2列聯表,并判斷是否有95%的把握認為物理成績優(yōu)秀與性別有關.

參考公式和數據:K2=

P(K2≥k)

0.50

0.05

0.025

0.005

k

0.455

3.841

5.024

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某連鎖經營公司所屬5個零售店某月的銷售額和利潤額資料如下表

商店名稱

A

B

C

D

E

銷售額x(千萬元)

3

5

6

7

9

利潤額y(百萬元)

2

3

3

4

5


(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當銷售額為4(千萬元)時,估計利潤額的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四個數,前三個數成等比數列,和為19,后三個數成等差數列,和為12,求此四個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據國家環(huán)保部新修訂的《環(huán)境空氣質量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數據,數據統(tǒng)計如表

組別

PM2.5濃度
(微克/立方米)

頻數(天)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1


(1)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的天數中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(2)將這20天的測量結果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數,并根據樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質量是否需要改善?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點為線段的中點, , 現將△沿進行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.

(1)證明: ;

(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 時,“”是“”的充要條件

B. 時,“”是“”的充分不必要條件

C. 時,“”是“”的必要不充分條件

D. 時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4—4:坐標系與參數方程]以平面直角坐標系原點為極點,x軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同長度單位,已知曲線的參數方程為,( 為參數,且),曲線的極坐標方程為

(1)求的極坐標方程與的直角坐標方程;

(2))若P是上任意一點,過點P的直線于點M,N,求的取值范圍.

查看答案和解析>>

同步練習冊答案