【題目】已知橢圓()的左、右焦點分別為、,設(shè)點,在中, ,周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于、兩點,若直線與的斜率之和為,求證:直線過定點,并求出該定點的坐標(biāo);
(3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據(jù)面積的不同取值范圍,討論存在的個數(shù),并說明理由.
【答案】(1);(2)過定點;(3)見解析.
【解析】試題分析:(1)由題意布列關(guān)于的方程組,從而得到橢圓方程;(2) 設(shè)直線方程: ,聯(lián)立方程可得: ,利用根與系數(shù)的關(guān)系及,得到過定點.(3)設(shè)直線與橢圓相切, ,兩切線到的距離分別為,根據(jù)面積的不同取值范圍,討論存在的個數(shù).
試題解析:
(1)由得: ,所以………①
又周長為,所以………②
解①②方程組,得
所以橢圓方程為
(2)設(shè)直線方程: ,交點
依題: 即:
過定點.
(3),
設(shè)直線與橢圓相切,
得兩切線到的距離分別為
當(dāng)時, 個數(shù)為0個
當(dāng)時, 個數(shù)為1個
當(dāng)時, 個數(shù)為2個
當(dāng)時, 個數(shù)為3個
當(dāng)時, 個數(shù)為4個
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)已知動圓過定點且與軸截得的弦的長為.
(Ⅰ)求動圓圓心的軌跡的方程;
(Ⅱ)已知點,動直線和坐標(biāo)軸不垂直,且與軌跡相交于兩點,試問:在軸上是否存在一定點,使直線過點,且使得直線,,的斜率依次成等差數(shù)列?若存在,請求出定點的坐標(biāo);否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測年齡為60歲觀眾周均學(xué)習(xí)成語知識的時間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機統(tǒng)計了4位觀眾的周均學(xué)習(xí)成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預(yù)測年齡為60歲觀眾周均學(xué)習(xí)成語知識的時間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;
(2)已知點是曲線上的任意一點,求點到直線的距離的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com