已知函數(shù)f(x)=x3-ax2-x+a,其中a為實數(shù).
(1)若f′(-1)=0,求f(x)在[-2,3]上的最大值和最小值;
(2)若f(x)在(-∞,-2]和[3,+∞)上都是遞增的,求a的取值范圍.
分析:(1)求導(dǎo)函數(shù),利用f′(-1)=0,確定函數(shù)的解析式,進而可求f(x)在[-2,3]上的最大值和最小值;
(2)導(dǎo)函數(shù)圖象開口向上,且恒過點(0,-1),根據(jù)f(x)在(-∞,-2]和[3,+∞)上都是遞增的,可得a的取值范圍.
解答:解:(1)求導(dǎo)函數(shù),可得f′(x)=3x2-2ax-1,∴f′(-1)=3+2a-1=0 
∴a=-1,∴f(x)=x3+x2-x-1
∴f′(x)=3x2+2x-1
由f′(x)=0 可得 x=
1
3
或x=-1
又∵f(
1
3
)=-
32
27
,f(-2)=-3,f(3)=32,f(-1)=0
 
∴f(x)在[-2,3]上的最小值為-3,最大值為32;
(2)f′(x)=3x2-2ax-1,圖象開口向上,且恒過點(0,-1)
由條件f(x)在(-∞,-2]和[3,+∞)上都是遞增的,可得:f(-2)≥0,∴11+4a≥0,∴a≥-
11
4
 
f′(3)≥0,∴26-6a≥0,∴a≤
13
3
 
∴a的取值范圍是[-
11
4
,
13
3
]
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的最值與單調(diào)性,考查解不等式,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案