(1)已知公差不為0的數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)的和為Sn,若數(shù)列{}是等差數(shù)列,

①求an;②令bn=qSn(q>0),若對(duì)一切n∈N*,都有>2bn*bn+2,求q的取值范圍。

(2)是否存在各項(xiàng)都是正整數(shù)的無(wú)窮數(shù)列{cn},使>2Cn*Cn+2對(duì)一切n∈N*都成立,若存在,請(qǐng)寫出數(shù)列的一個(gè)通項(xiàng)公式,若不存在,說(shuō)明理由。

 

【答案】

【解析】

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且
1
a1
,
1
a2
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
(Ⅱ)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,當(dāng)n≥2時(shí),試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}滿足a2=3,a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足bn=
an
an+1
+
an+1
an
,求數(shù)列{bn}的前n項(xiàng)和Sn
(Ⅲ)設(shè)cn=2n(
an+1
n
-λ)
,若數(shù)列{cn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1=a(a∈R),設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且a1、a2、a4恰為等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式及Sn
(2)當(dāng)n≥2時(shí),比較An=
1
S1
+
1
S2
+…+
1
Sn
Bn=
1
b1
+
1
b2
+…+
1
bn
的大。ǹ墒褂媒Y(jié)論:n≥2時(shí),2n>n+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆江蘇省南京市高三第二次模擬考試數(shù)學(xué)卷 題型:解答題


(1)已知公差不為0的數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)的和為Sn,若數(shù)列{}是等差數(shù)列,
①求an;②令bn=qSn(q>0),若對(duì)一切n∈N*,都有>2bn*bn+2,求q的取值范圍。
(2)是否存在各項(xiàng)都是正整數(shù)的無(wú)窮數(shù)列{cn},使>2Cn*Cn+2對(duì)一切n∈N*都成立,若存在,請(qǐng)寫出數(shù)列的一個(gè)通項(xiàng)公式,若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案