【題目】已知函數(shù)(是常數(shù)且),對(duì)于下列命題:
①函數(shù)的最小值是;
②函數(shù)在上是單調(diào)函數(shù);
③若在上恒成立,則的取值范圍是;
④對(duì)任意的且,恒有
其中正確命題的序號(hào)是__________.
【答案】①③④
【解析】函數(shù)(是常數(shù)且)的圖象如圖所示:
對(duì)于①,由圖可得:當(dāng)時(shí),函數(shù)的最小值是-1;故正確;對(duì)于②,由圖象說(shuō)明函數(shù)在上不是單調(diào)函數(shù);故錯(cuò)誤;③若在上恒成立,則,求得的取值范圍是,故正確;對(duì)于④,已知函數(shù)在上的圖象在上是下凹的,所以任取兩點(diǎn)連線應(yīng)在圖象的上方,即,故正確.
故答案為①③④
【點(diǎn)晴】本題通過(guò)對(duì)多個(gè)命題真假的判斷綜合考查最值、單調(diào)性、恒成立問(wèn)題以及數(shù)學(xué)化歸思想,屬于難題.該題型往往出現(xiàn)在在填空題最后兩題,綜合性較強(qiáng),同學(xué)們往往因?yàn)槟骋稽c(diǎn)知識(shí)掌握不牢就導(dǎo)致本題“全盤(pán)皆輸”,解答這類(lèi)問(wèn)題首先不能慌亂更不能因貪快而審題不清,其次先從最有把握的命題入手,最后集中力量攻堅(jiān)最不好理解的命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一個(gè)求20個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填 ( )
A.i>20
B.i<20
C.i>=20
D.i<=20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且bsinA= acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分別求a和c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過(guò)第二象限,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項(xiàng)和為T(mén)n , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為 , 則實(shí)數(shù)a的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一5:不等式選講.
已知函數(shù).
(1)求的解集;
(2)設(shè)函數(shù),若對(duì)任意的都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為1,弧BD是以點(diǎn)A為圓心的圓弧.
(1)在正方形內(nèi)任取一點(diǎn)M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率π的近似值(精確到0.01).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com