【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2 , a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anlog2an , 其前n項(xiàng)和為Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:設(shè)等比數(shù)列的{an}首項(xiàng)為a1,公比為q.

由題意可知: ,

解得: ,

∵數(shù)列為單調(diào)遞增的等比數(shù)列,

∴an=2n;


(2)解:bn=anlog2an=n2n

∴Sn=b1+b2+…+bn=121+222+…+n2n,①

2Sn=122+223+324+…+n2n+1,②

①﹣②,得:﹣Sn=2+22+23+…+2n﹣n2n+1

= ﹣n2n+1=2n+1﹣2﹣n2n+1,

∴Sn=(n﹣1)2n+1+2,

若(n﹣1)2≤m(Sn﹣n﹣1)對(duì)于n≥2恒成立,

則(n﹣1)2≤m[(n﹣1)2n+1+2﹣n﹣1]=m[(n﹣1)2n+1+1﹣n]對(duì)于n≥2恒成立,

= 對(duì)于n≥2恒成立,

=

∴數(shù)列{ }為遞減數(shù)列,

則當(dāng)n=2時(shí), 的最大值為

∴m≥

則實(shí)數(shù)m得取值范圍為[ ,+∞).


【解析】(1)設(shè)出等比數(shù)列{an}的首項(xiàng)和公比,由已知列式求得首項(xiàng)和公比,則數(shù)列{an}的通項(xiàng)公式可求;(2)把(1)中求得的通項(xiàng)公式代入bn=anlog2an , 利用錯(cuò)位相減法求得Sn , 代入(n﹣1)2≤m(Sn﹣n﹣1),分離變量m,由單調(diào)性求得最值得答案.
【考點(diǎn)精析】本題主要考查了對(duì)數(shù)的運(yùn)算性質(zhì)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握①加法:②減法:③數(shù)乘:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求曲線在點(diǎn)處切線的方程.

求函數(shù)的單調(diào)區(qū)間.

當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)市場(chǎng)分析,某蔬菜加工點(diǎn),當(dāng)月產(chǎn)量為10噸至25噸時(shí),月生產(chǎn)總成本(萬(wàn)元)可以看出月產(chǎn)量(噸)的二次函數(shù),當(dāng)月產(chǎn)量為10噸時(shí),月生產(chǎn)成本為20萬(wàn)元,當(dāng)月產(chǎn)量為15噸時(shí),月生產(chǎn)總成本最低至17.5萬(wàn)元.

(I)寫出月生產(chǎn)總成本(萬(wàn)元)關(guān)于月產(chǎn)量噸的函數(shù)關(guān)系;

(II)已知該產(chǎn)品銷售價(jià)為每噸1.6萬(wàn)元,那么月產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn),并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mex+x2+nx,{x|f(x)=0}={x|f(f(x))=0}≠,則m+n的取值范圍為(
A.(0,4)
B.[0,4)
C.[0,4]
D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬(wàn)人)的數(shù)據(jù),繪制了下面的折線圖.

2014年 2015年 2016年

根據(jù)該折線圖,下列結(jié)論錯(cuò)誤的是( )

A. 年接待游客量逐年增加

B. 月接待游客量逐月增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)C在橢圓M: =1(a>b>0)上,若點(diǎn)A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點(diǎn).線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點(diǎn)P(﹣3,0),直線l過(guò)點(diǎn)(0,﹣ ),求直線l的方程;
②若直線l過(guò)點(diǎn)(0,﹣1),且與x軸的交點(diǎn)為D.求D點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個(gè)“P數(shù)對(duì)”,設(shè)函數(shù)的定義域?yàn)?/span>,且。

(1)若的一個(gè)“P數(shù)對(duì)”,且,求常數(shù)的值;

(2)若(1,1)是的一個(gè)“P數(shù)對(duì)”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個(gè)“P數(shù)對(duì)”,且當(dāng)時(shí),,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F(xiàn) 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知,

(1)求證:AD⊥平面BCE;

(2)求三棱錐A﹣CFD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案